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John Duchi

1 General loss functions

Building off of our interpretations of supervised learning as (1) choosing a
representation for our problem, (2) choosing a loss function, and (3) minimiz-
ing the loss, let us consider a slightly more general formulation for supervised
learning. In the supervised learning settings we have considered thus far, we
have input data x ∈ R

n and targets y from a space Y . In linear regression,
this corresponded to y ∈ R, that is, Y = R, for logistic regression and other
binary classification problems, we had y ∈ Y = {−1, 1}, and for multiclass
classification we had y ∈ Y = {1, 2, . . . , k} for some number k of classes.

For each of these problems, we made predictions based on θTx for some
vector θ, and we constructed a loss function L : R×Y → R, where L(θTx, y)
measures the loss we suffer for predicting θTx. For logistic regression, we use
the logistic loss

L(z, y) = log(1 + e−yz) or L(θTx, y) = log(1 + e−yθT x).

For linear regression we use the squared error

L(z, y) =
1

2
(z − y)2 or L(θTx, y) =

1

2
(θTx− y)2.

For multiclass classification, we had a slight variant, where we let Θ =
[θ1 · · · θk] for θi ∈ R

n, and used the loss L : Rk × {1, . . . , k} → R

L(z, y) = log

(
k∑

i=1

exp(zi − zy)

)

or L(ΘTx, y) = log

(
k∑

i=1

exp(xT (θi − θy))

)

,

the idea being that we wish to have θTy x > θTi x for all i 6= k. Given a training

set of pairs {x(i), y(i)}, choose θ by minimizing the empirical risk

J(θ) =
1

m

m∑

i=1

L(θTx(i), y(i)). (1)
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2 The representer theorem

Let us consider a slight variant of choosing θ to minimize the risk (1). In
many situations—for reasons that we will study more later in the class—it
is useful to add regularization to the risk J . We add regularization for many
reasons: often, it makes problem (1) easier to solve numerically, and also
it can allow the θ we get out of minimizing the risk (1) able to generalize
better to unseen data. Generally, regularization is taken to be of the form
r(θ) = ‖θ‖ or r(θ) = ‖θ‖2 for some norm ‖·‖ on R

n. The most common
choice is so-called ℓ2-regularization, in which we choose

r(θ) =
λ

2
‖θ‖22 ,

where we recall that ‖θ‖2 =
√
θT θ is the Euclidean norm, or length, of the

vector θ. This gives rise to the regularized risk, which is

Jλ(θ) =
1

m

m∑

i=1

L(θTx(i), y(i)) +
λ

2
‖θ‖22 . (2)

Let us consider the structure of any θ that minimizes the risk (2). We
assume—as we often do—that for each fixed target value y ∈ Y , the function
L(z, y) is convex in z. (This is the case for linear regression and binary
and multiclass logistic regression, as well as a number of other losses we will
consider.) It turns out that under these assumptions, we may always write
the solutions to the problem (2) as a linear combination of the input variables
x(i). More precisely, we have the following theorem, known as the representer
theorem.

Theorem 2.1. Suppose in the definition of the regularized risk (2) that λ ≥
0. Then there is a minimizer of the regularized risk (2) that can be written

θ =
m∑

i=1

αix
(i)

for some real-valued weights αi.

Proof For intuition, we give a proof of the result in the case that L(z, y),
when viewed as a function of z, is differentiable and λ > 0. In Appendix A,
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we present a more general statement of the theorem as well as a rigorous
proof.

Let L′(z, y) = ∂
∂z
L(z, y) denote the derivative of the loss with respect to

z. Then by the chain rule, we have the gradient identity

∇θL(θ
Tx, y) = L

′(θTx, y)x and ∇θ

1

2
‖θ‖22 = θ,

where ∇θ denotes taking a gradient with respect to θ. As the risk must have
0 gradient at all stationary points (including the minimizer), we can write

∇Jλ(θ) =
1

m

m∑

i=1

L
′(θTx(i), y(i))x(i) + λθ = ~0.

In particular, letting wi = L
′(θTx(i), y(i)), as L′(θTx(i), y(i)) is a scalar (which

depends on θ, but no matter what θ is, wi is still a real number), we have

θ = −1

λ

n∑

i=1

wix
(i).

Set αi = −wi

λ
to get the result.

3 Nonlinear features and kernels

Based on the representer theorem, Theorem 2.1, we see that we can always
write the vector θ as a linear combination of the data {x(i)}mi=1. Importantly,
this means we can always make predictions

θTx = xT θ =
m∑

i=1

αix
Tx(i).

That is, in any learning algorithm, we may can replace all appearances of

θTx with
∑m

i=1 αix
(i)Tx, and then minimize directly over α ∈ R

m.
Let us consider this idea in somewhat more generality. In our discussion

of linear regression, we had a problem in which the input x was the living
area of a house, and we considered performing regression using the features x,
x2 and x3 (say) to obtain a cubic function. To distinguish between these two
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sets of variables, we’ll call the “original” input value the input attributes

of a problem (in this case, x, the living area). When that is mapped to
some new set of quantities that are then passed to the learning algorithm,
we’ll call those new quantities the input features. (Unfortunately, different
authors use different terms to describe these two things, but we’ll try to use
this terminology consistently in these notes.) We will also let φ denote the
feature mapping, which maps from the attributes to the features. For
instance, in our example, we had

φ(x) =





x
x2

x3



 .

Rather than applying a learning algorithm using the original input at-
tributes x, we may instead want to learn using some features φ(x). To do so,
we simply need to go over our previous algorithm, and replace x everywhere
in it with φ(x).

Since the algorithm can be written entirely in terms of the inner prod-
ucts 〈x, z〉, this means that we would replace all those inner products with
〈φ(x), φ(z)〉. Specificically, given a feature mapping φ, we define the corre-
sponding kernel to be

K(x, z) = φ(x)Tφ(z).

Then, everywhere we previously had 〈x, z〉 in our algorithm, we could simply
replace it with K(x, z), and our algorithm would now be learning using the
features φ. Let us write this out more carefully. We saw by the representer
theorem (Theorem 2.1) that we can write θ =

∑m

i=1 αiφ(x
(i)) for some weights

αi. Then we can write the (regularized) risk

Jλ(θ) = Jλ(α)

=
1

m

m∑

i=1

L

(

φ(x(i))T
m∑

j=1

αjφ(x
(j)), y(i)

)

+
λ

2

∥
∥
∥
∥

m∑

i=1

αiφ(x
(i))

∥
∥
∥
∥

2

2

=
1

m

m∑

i=1

L

( m∑

j=1

αjφ(x
(i))Tφ(x(j)), y(i)

)

+
λ

2

m∑

i=1

m∑

j=1

αiαjφ(x
(i))Tφ(x(j))

=
1

m

m∑

i=1

L

( m∑

j=1

αjK(x(i), x(j)), y(i)
)

+
λ

2

∑

i,j

αiαiK(x(i), x(j)).
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That is, we can write the entire loss function to be minimized in terms of the
kernel matrix

K = [K(x(i), x(j))]mi,j=1 ∈ R
m×m.

Now, given φ, we could easily compute K(x, z) by finding φ(x) and φ(z)
and taking their inner product. But what’s more interesting is that often,
K(x, z) may be very inexpensive to calculate, even though φ(x) itself may be
very expensive to calculate (perhaps because it is an extremely high dimen-
sional vector). In such settings, by using in our algorithm an efficient way to
calculate K(x, z), we can learn in the high dimensional feature space space
given by φ, but without ever having to explicitly find or represent vectors
φ(x). As a few examples, some kernels (corresponding to infinite-dimensional
vectors φ) include

K(x, z) = exp

(

− 1

2τ 2
‖x− z‖22

)

,

known as the Gaussian or Radial Basis Function (RBF) kernel and applicable
to data in any dimension, or the min-kernel (applicable when x ∈ R, defined
by

K(x, z) = min{x, z}.
See also the lecture notes on Support Vector Machines (SVMs) for more on
these kernel machines.

4 Stochastic gradient descent for kernelized

machine learning

If we let K ∈ R
m×m denote the kernel matrix, and for shorthand define the

vectors

K(i) =








K(x(i), x(1))
K(x(i), x(2))

...
K(x(i), x(m))







,

so that K = [K(1) K(2) · · · K(m)], then we may write the regularized risk in
a consise form as

Jλ(α) =
1

m

m∑

i=1

L(K(i)Tα, y(i)) +
λ

2
αTKα.
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Now, let us consider taking a stochastic gradient of the above risk Jλ. That is,
we wish to construct a (simple to compute) random vector whose expectation
is∇Jλ(α), which does not have too much variance. To do so, we first compute
the gradient of Jλ(α) on its own. We calculate the gradient of individual loss
terms by noting that

∇αL(K
(i)Tα, y(i)) = L

′(K(i)Tα, y(i))K(i),

while

∇α

[
λ

2
αTKα

]

= λKα = λ

m∑

i=1

K(i)αi.

Thus, we have

∇αJλ(α) =
1

m

m∑

i=1

L
′(K(i)Tα, y(i))K(i) + λ

m∑

i=1

K(i)αi.

Thus, if we choose a random index i ∈ {1, . . . ,m}, we have that

L
′(K(i)Tα, y(i))K(i) +mλK(i)αi

is a stochastic gradient for Jλ(α). This gives us a stochastic gradient proce-
dure for Kernel supervised learning problems, shown in Figure 1. One minor

Input: A loss function L, kernel matrix K = [K(1) · · · K(m)], and labels
{y(i)}mi=1, and sequence of positive stepsizes η1, η2, η3, . . .

Iterate for t = 1, 2, . . .

(i) Choose index i ∈ {1, . . . ,m} uniformly at random

(ii) Update

α := α− ηt

[

L
′(K(i)Tα, y(i))K(i) +mλK(i)αi

]

.

Figure 1: Stochastic gradient descent for kernel supervised learning problems.

remark is in order regarding Algorithm 1: because we multiply the λK(i)αi

term by m to keep the gradient unbiased, it is important that λ > 0 not be
too large, as the algorithm can be a bit unstable otherwise. In addition, a
common choice of stepsize is to use ηt = 1/

√
t, or a constant multiple thereof.
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5 Support vector machines

Now we discuss (one approach) to Support Vector Machines (SVM)s, which
apply to binary classification problems with labels y ∈ {−1, 1}, and a partic-
ular choice of loss function L. In particular, for the support vector machine,
we use the margin-based loss function

L(z, y) = [1− yz]+ = max{0, 1− yz}. (3)

So, in a sense, SVMs are nothing but a special case of the general theoret-
ical results we have described above. In particular, we have the empirical
regularized risk

Jλ(α) =
1

m

m∑

i=1

[

1− y(i)K(i)Tα
]

+
+

λ

2
αTKα,

where the matrix K = [K(1) · · · K(m)] is defined by Kij = K(x(i), x(j)).
In the lecture notes, you can see another way of deriving the support

vector machine and a description of why we actually call them support vector
machines.

6 An example

In this section, we consider a particular example kernel, known as the Gaus-
sian or Radial Basis Function (RBF) kernel. This kernel is defined by

K(x, z) = exp

(

− 1

2τ 2
‖x− z‖22

)

, (4)

where τ > 0 is a parameter controlling the bandwidth of the kernel. Intu-
itively, for τ very small, we will have K(x, z) ≈ 0 unless x ≈ z, that is, x and
z are very close, in which case we have K(x, z) ≈ 1. However, for τ large,
then we have a much smoother kernel function K. The feature function φ
for this kernel is infinite dimensional.1 That said, it is possible to gain some

1If you have seen characteristic functions or Fourier transforms, then you might rec-
ognize the RBF kernel as the Fourier transform of the Gaussian distribution with mean
zero and variance τ2. That is, in R

n, let W ∼ N(0, τ2In×n), so that W has density
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Figure 2: Small bandwidths τ for Gaussian kernel K(x, z) =
exp(− 1

2τ2
‖x− z‖22).

intuition for the kernel by considering the classifications it makes on a new
example x: we have prediction

m∑

i=1

K(x(i), x)αi =
m∑

i=1

exp

(

− 1

2τ 2
∥
∥x(i) − x

∥
∥
2

2

)

αi,

p(w) = 1
(2πτ2)n/2 exp(−‖w‖2

2

2τ2 ). Let i =
√
−1 be the imaginary unit, then for any vector v

we have

E[exp(ivTW )] =

∫

exp(ivTw)p(w)dw =

∫
1

(2πτ2)n/2
exp

(

ivTw − 1

2τ2
‖w‖22

)

dw

= exp

(

− 1

2τ2
‖v‖22

)

.

Thus, if we define the “vector” (really, function) φ(x,w) = eix
Tw and let a∗ be the complex

conjugate of a ∈ C, then we have

E[φ(x,W )φ(z,W )∗] = E[eix
TW e−ixTW ] = E[exp(iWT (x− z))] = exp

(

− 1

2τ2
‖x− z‖22

)

.

In particular, we see that K(x, z) is the inner product in a space of functions that are
integrable against p(w).
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Figure 3: Medium bandwidths τ for Gaussian kernel K(x, z) =
exp(− 1

2τ2
‖x− z‖22).

so that this becomes something like a weighting depending on how close x
is to each x(i)—that is, the contribution of weight αi is multiplied by the
similarity of x to x(i) as determined by the kernel function.

In Figures 2, 3, and 4, we show the results of training 6 different kernel
classifiers by minimizing

Jλ(α) =
m∑

i=1

[

1− y(i)K(i)Tα
]

+
+

λ

2
αTKα,

with m = 200 and λ = 1/m, for different values of τ in the kernel (4). We
plot the training data (positive examples as blue x’s and negative examples
as red o’s) as well as the decision surface of the resulting classifier. That is,
we plot the lines defined by

{

x ∈ R
2 :

m∑

i=1

K(x, x(i))αi = 0

}

,

giving the regions where the learned classifier makes a prediction
∑m

i=1 K(x, x(i))αi >
0 and

∑m

i=1 K(x, x(i))αi < 0. From the figure, we see that for large τ , we have
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Figure 4: Large bandwidths τ for Gaussian kernel K(x, z) =
exp(− 1

2τ2
‖x− z‖22).

a very simple classifier: it is nearly linear, while for τ = .1, the classifier has
substantial variability and is highly non-linear. For reference, in Figure 5, we
plot the optimal classifier along with the training data; the optimal classifier
minimizes the misclassification error given infinite training data.

A A more general representer theorem

In this section, we present a more general version of the representer theorem
along with a rigorous proof. Let r : R → R be any non-decreasing function
of its argument, and consider the regularized risk

Jr(θ) =
1

m

m∑

i=1

L(x(i)T θ, y(i)) + r(‖θ‖2). (5)

Often, we take r(t) = λ
2
t2, which corresponds to the common choice of ℓ2-

regularization, but the next theorem makes clear that this is not necessary
for the representer theorem. Indeed, we could simply take r(t) = 0 for all t,
and the theorem still holds.
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Figure 5: Optimal classifier along with training data.

Theorem A.1 (Representer theorem in R
n). Let θ ∈ R

n be any vector. Then

there exists some α ∈ R
m and θ(α) =

∑m

i=1 αix
(i) such that

Jr(θ
(α)) ≤ Jr(θ).

In particular, there is no loss of generality in always assuming we can write
the optimization problem to minimize J(θ) by only considering θ in the span
of the data.
Proof Our proof relies on some machinery from linear algebra, which
allows us to keep it concise, but feel free to ask questions if it is too concise.

The vectors {x(i)}mi=1 are in R
n, and as a consequence there is some sub-

space V of Rn such that

V =

{ m∑

i=1

βix
(i) : βi ∈ R

}

.

Then V has an orthonormal basis {v1, . . . , vn0
} for vectors vi ∈ R

n, where the
size (dimension) of the basis is n0 ≤ n. Thus we can write V = {∑n0

i=1 bivi :
bi ∈ R}, where we recall that orthonormality means that the vectors vi
satisfy ‖vi‖2 = 1 and vTi vj = 0 for i 6= j. There is also an orthogonal
subspace V ⊥ = {u ∈ R

n : uTv = 0 for all v ∈ V }, which has an orthonormal
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basis of size n⊥ = n − n0 ≥ 0, which we write as {u1, . . . , un⊥
} ⊂ R

n. By
construction they satisfy uT

i vj = 0 for all i, j.
Because θ ∈ R

n, we know that we can write it uniquely as

θ =

n0∑

i=1

νivi +

n⊥∑

i=1

µiui, where νi ∈ R and µi ∈ R,

and the values µ, ν are unique. Now, we know that by definition of the space
V as the span of {x(i)}mi=1, there exists α ∈ R

m such that

n0∑

i=1

νivi =
m∑

i=1

αix
(i),

so that we have

θ =
m∑

i=1

αix
(i) +

n⊥∑

i=1

µiui.

Define θ(α) =
∑m

i=1 αix
(i). Now, for any data point x(j), we have

uT
i x

(j) = 0 for all i = 1, . . . , n⊥,

so that uT
i θ

(α) = 0. As a consquence, we have

‖θ‖22 =
∥
∥
∥
∥
θ(α) +

n⊥∑

i=1

µiui

∥
∥
∥
∥

2

2

=
∥
∥θ(α)

∥
∥
2

2
+2

n⊥∑

i=1

µiu
T
i θ

(α)

︸ ︷︷ ︸

=0

+

∥
∥
∥
∥

n⊥∑

i=1

µiui

∥
∥
∥
∥

2

2

≥
∥
∥θ(α)

∥
∥
2

2
,

(6a)
and we also have

θ(α)
T
x(i) = θTx(i) (6b)

for all points x(i).
That is, by using ‖θ‖2 ≥

∥
∥θ(α)

∥
∥
2
and equality (6b), we have

Jr(θ) =
1

m

m∑

i=1

L(θTx(i), y(i)) + r(‖θ‖2)
(6b)
=

1

m

m∑

i=1

L(θ(α)
T
x(i), y(i)) + r(‖θ‖2)

(6a)

≥ 1

m

m∑

i=1

L(θ(α)
T
x(i), y(i)) + r(

∥
∥θ(α)

∥
∥
2
)

= Jr(θ
(α)).

This is the desired result.
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