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Alternate Title

So you studied ML, and you’ll soon see your relatives.
Now what?
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Holiday gatherings

Figure: “So... I hear they disproved AI.” – My (adversarial) uncle
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1 Brittleness

2 Interpretability

3 Interpretability

4 Expense: Data and compute

5 Expense: Data and compute

6 Community weaknesses
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Adversarial examples

Invalid smoothness assumption. “For a small enough radius ε > 0 in
the vicinity of a given training input x , an x + r satisfying ‖r‖ < ε will
get assigned a high probability of the correct class by the model” [1].

Adversarial examples: [1, 2, 3, 4].

Theory: [2].

How to construct: [2, 5].

How to defend: [1, 6, 7, 8].

Future: Still an open problem. How fundamental?
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Adversarial examples

Figure: Left: Correctly classified image, center: perturbation, right: classified as
Ostrich. Reproduced from [1].

CS 229, Fall 2018 (Stanford) ML Critiques November 30, 2018 6 / 38



Constructing adversarial examples

Fast gradient sign method [2]. Let θ be parameters, x input, y target,
and J(θ, x , y) cost.

Then set x̃ := x + η where

η = ε · sign(∇xJ(θ, x , y)).

Figure: FGSM example, GoogLeNet trained on ImageNet, ε = .007. Reproduced
from [2].
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Properties

Change often indistinguishable to human eye.

Adversarial examples generalize across architectures, training sets.

Adversarial perturbations η generalize across examples.

Can construct in the physical world.

Figure: A turtle. Or is it a rifle? Reproduced from [4].
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Defenses

Train on mixture of clean x , perturbed x̃ [1].

Use distillation [6] as a defense [7]. I.e., train second network to
match high-temperature softmax activations of first one.

Many others [8]. But... [2] claims fundamental problem with linear
models (and high-dimensional input):

wT x̃ = wTx + wTη.

Continue to find new attacks that defeat previous defenses (e.g., [5]).
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Interpretability

Switching gears: Interpretability.

Desiderata for interpretability:
1 Trust: OK relinquishing control?
2 Causality: Uncover causal relationships?
3 Transferability: Works on other distributions?
4 Informativeness: How much info. do we get?
5 Fairness and ethics: Will real-world effect be fair?

Many ideas from [9].

Figure: Reproduced from [9]. Main problem: Evaluation only requires y∗, ŷ .
Often difficult to capture real-world costs (e.g., ethics, legality).
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Interpretability: Fallacies

Fallacy 1. “Linear models are interpretable. Neural networks are
black boxes.”

Any discussion of what is “interpretable” must fix a definition:

Transparent: Simulatable, decomposable, understandable algorithm.
Post-hoc interpretation: Text, visualization, local explanation,
explanation by example.

Linear models win on algorithmic transparency. Neural networks win
on post-hoc interpretation: rich features to visualize, verbalize,
cluster.
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Interpretability Definition 1: Transparency

Simulatable.

Decomposable.

Understandable algorithm.
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Interpretability Definition 2: Post-hoc Explanation

Text. E.g., Auxiliary RNN to produce sentence.

Visualization. E.g., render distributed representations in 2D with
t-SNE [10].

Local explanation. Popular: e.g., Saliency Maps [11], CAMs [12],
Grad-CAMs [13], attention [14, 15].

Figure: Grad-CAMs.

Explanation by example. Run k-NN on representations.
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Interpretability: Fallacies

Fallacy 2. “All AI applications need to be transparent.”

Figure: Is this a transparent algorithm? If not, why do you use it?

Full transparency can preclude models that surpass our ability on
complex tasks.
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Interpretability: Fallacies

Fallacy 3. Always trust post-hoc explanation (e.g., CAMs).

Post-hoc interpretations can be optimized to mislead.

E.g., in college admissions, post-hoc explanations of leadership and
originality disguise racial, gender discrimination [16].
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Interpretability: Summary

Never discuss “interpretability” without clarifying the definition.

Beware of interpretability fallacies.

Find your domain-specific definition of interpretability, then use the
tools available.

Try to solve the core problem: Align loss with downstream task. E.g.,
segmentation over classification.
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Expense: Data and compute

Switching gears: ML can be expensive.
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Expense: Data

Costly data collection and computation (in time and money).

Solution 1: Unsupervised [17, 18] and semi-supervised approaches
[19].
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Expense: Data

Case study: Unsupervised pre-training [18].

Figure: Layer-wise unsupervised pre-training. Author: Hugo Larochelle.
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Expense: Data

Case study: Data distillation [20].

Figure: Expanding your training set with data distillation.
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Expense: Data

Transfer learning [18, 21]. Pretrain on related tasks.

Use public datasets, e.g., ImageNet.
Download model parameters from internet.

Recent work from Stanford researchers: Taskonomy [22].

Figure: Taskonomy: “taxonomy of tasks” to guide transfer learning.
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Expense: Compute

Compression [23].

Quantization [24]. Why use float32 for all your weights?

Specialized hardware [25, 26]. GPUs are inefficient. More efficiency
with FPGA, TPU.

Figure: Deep compression: Pruning, quantization, and Huffman coding. 50×
gains.
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Expense: Compute

Efficient models [27, 28].

Knowledge distillation [6, 29].

Figure: Knowledge distillation.
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Summary: Expense

Data: Transfer learning, public datasets, unsupervised pretraining.
Newer technizues coming out frequently.

Compute: Compression, quantization, specialized hardware.
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Community weaknesses

Cycle of hype and winter [30].

Lack of rigor and worries of troubling scholarship trends [31, 32].

Many incorrect theories invented to explain observations, rather than
derived from theoretical foundations [33, 34].
Suggestion of [33]: Spend more time doing experiments to find root
cause for unexpected results, rather than chasing performance.

Lack of equal representation. Example efforts to counteract: [35, 36].

Barriers to entry (funding and data).
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Conclusion

1 Brittleness
2 Interpretability
3 Interpretability
4 Expense: Data and compute
5 Expense: Data and compute
6 Community weaknesses

“Max Planck said, ’Science
progresses one funeral at a time.’
The future depends on some
graduate student who is deeply
suspicious of everything I have
said.” —Geoff Hinton [37]
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