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Outline

Today:

SVMs 

Kernels

Tree Ensembles

EM Algorithm / Mixture Models

[ Focus on building intuition, less so on solving specific problems. Ask questions! ]



SVMs



Optimal margin classifier

Two classes separable by linear decision boundary.

But first … what is a hyperplane?

○ In d-dimensional space, a (d−1)-dimensional affine subspace
○ Examples: line in 2D, plane in 3D

Hyperplane in d-dimensional space:

[Separates space into two half-spaces.]



Hyperplanes



Idea:

Use a separating hyperplane for 
binary classification.

Key assumption:

Classes can be separated by a linear 
decision boundary.

Optimal margin classifier



Optimal margin classifier

To classify new data points:

Assign class by location of new data 
point with respect to hyperplane:



Optimal margin classifier

Problem

Many possible separating 
hyperplanes!



Optimal margin classifier

Which linear decision boundary?

Separating hyperplane “farthest” 
from the training data.

➔ “Optimal margin”



Optimal margin classifier

Margin: smallest distance between any 
training observation and the hyperplane

Support vectors: the training 
observations equidistant from the 
hyperplane

Which linear decision boundary?

Separating hyperplane “farthest” 
from the training data



Regularization and the non-separable case

Disadvantage

Can be sensitive to individual 
observations.

May overfit training data.



Regularization and the non-separable case

So far we’ve assumed that classes 
can be separated by a linear 
decision boundary.

What if there’s no separating 
hyperplane?



Regularization and the non-separable case

What if there’s no separating 
hyperplane?

Support Vector Classifier:

Allows training samples on the 
“wrong side” of the margin or 
hyperplane.



Regularization and the non-separable case

Penalty parameter C

“Budget” for violations, allows 
at most C misclassifications 
on training set.

Support vectors

Observations on margin or 
violating margin.



Quizz



Non-linear decision boundary

Disadvantage

What if we have a non-linear 
decision boundary?



Expanding feature space

Some data sets are not linearly 
separable...

But they become linearly separable 
when transformed into a higher 
dimensional space



Expanding feature space

Variables: X1, X2 Variables: X1, X2, X1X2



Suppose our original data has d features:

Expand feature space to include quadratic terms:

Decision boundary will be non-linear in original feature space (ellipse), but linear 
in the expanded feature space.

Non-linear decision boundary



Non-linear decision boundary



Non-linear decision boundary



Non-linear decision boundary

Large number of features becomes computationally challenging.

We need an efficient way to work with large number of features.



Kernels



Kernels

Kernel: Generalization of inner product.

Kernels (implicitly) map data into higher-dimensional space

Why use kernels instead of explicitly constructing larger feature space?

● Computational advantage when n << d [see the following slide]



Consider two equivalent ways to represent a linear classifier.

Left: 

Right: 

If       ,, much more space efficient to use kernelized representation.

Kernels



Tree Ensembles



Tree Ensembles

Decision Tree: recursively partition space to make predictions.

Prediction: simply predict the average of labels in leaf.



Tree Ensembles

Recursive partitioning: split on thresholds of features.

How to choose? Take average loss in children produced by split.

Classification: cross-entropy loss

Regression: mean squared-error loss



Decision tree tuning: 

1. Minimum leaf size
2. Maximum depth
3. Maximum number of nodes
4. Minimum decrease in loss
5. Pruning with validation set

Advantage: easy to interpret! 

Disadvantage: easy to overfit.

Tree Ensembles



Random forests: Take the average prediction of many decision trees, 

1. Each constructed on a bagged dataset of the original.
2. Only use a subset (typically √p) features per split.

Bagging: resample of the same size as the original dataset, with replacement.

Tree Ensembles

Each decision tree has high bias,
but averaging them together yields
low variance.



EM Algorithm / Mixtures



Gaussian Mixture Model

We have      data points, which we suppose come from      Gaussians.

Here, 

We hypothesize

Mixture Models



GMMs can be extremely effective at modeling distributions!

[Richardson and Weiss 2018: On GANs and GMMs]

Mixture Models



Problem: how do we estimate parameters when there are latent variables?

Idea: maximize marginal likelihood.

But this is difficult to compute!

Example: Mixture of Gaussians.

EM Algorithm



Algorithm

1. Begin with an initial guess for 
2. Alternate between:

a. [E-step] Hallucinate missing values by computing, for all possible values    ,

b. [M-step] Use hallucinated dataset to maximize lower bound on log-likelihood

EM Algorithm



[E-step] Hallucinate missing values by computing, for all possible values     ,

EM Algorithm

In the GMM example: for this data point, compute:

Now repeat for all data points. 

Creates “augmented” dataset, weighted by probabilities.



[M-step] Use hallucinated dataset to maximize lower bound on log-likelihood

We simply now fit using the augmented dataset with weights.

EM Algorithm



Theory

It turns out that we’re maximizing a lower bound on the true log-likelihood.

EM Algorithm

Here we use Jensen’s inequality.



Intuition

EM Algorithm



Sanity Check

EM is guaranteed to converge to a local optimum.

Why? 

Runtime per iteration? 

EM Algorithm



Sanity Check

EM is guaranteed to converge to a local optimum.

Why? 

Our estimated      only ever increases.

Runtime per iteration? 

In general, need to hallucinate one new data point per possible value of    .

For GMMS, need to hallucinate data points thanks to independence.

EM Algorithm



K Means and More GMMs



K Means - Motivation 



K Means - Algorithm(*)



K Means  



K Means 



K Means  



Real-World Example: Mixture of Gaussians

Note: data is unlabeled



How do we fit a GMM - the EM



Observations

Only the distribution of X matters.  You can change things like 
ordering of the components without affecting the distribution 
and hence not affecting the algorithm.

Mixing two distributions from a parametric family might give us 
a third distribution from the same family. A mixture of 2 
Bernoullis is another Bernoulli .

Probabilistic clustering - Putting similar data points together into 
“clusters”, where clusters are represented by the component 
distributions. 



Sample Question 

How do constraints on the covariance matrix change the gaussian 
that is being fit?



Tied



Diag



Spherical (K-Means!)


