(CS229 Lecture notes

Raphael John Lamarre Townshend

Decision Trees

We now turn our attention to decision trees, a simple yet flexible class of
algorithms. We will first consider the non-linear, region-based nature of
decision trees, continue on to define and contrast region-based loss functions,
and close off with an investigation of some of the specific advantages and
disadvantages of such methods. Once finished with their nuts and bolts, we
will move on to investigating different ensembling methods through the lens
of decision trees, due to their suitability for such techniques.

1 Non-linearity

Importantly, decision trees are one of the first inherently non-linear machine
learning techniques we will cover, as compared to methods such as vanilla
SVMs or GLMs. Formally, a method is linear if for an input x € R" (with
interecept term xy = 1) it only produces hypothesis functions h of the form:

h(z) = 60"z

where 6 € R"”. Hypothesis functions that cannot be reduced to the form
above are called non-linear, and if a method can produce non-linear hy-
pothesis functions then it is also non-linear. We have already seen that
kernelization of a linear method is one such method by which we can achieve
non-linear hypothesis functions, via a feature mapping ¢(z).

Decision trees, on the other hand, can directly produce non-linear hy-
pothesis functions without the need for first coming up with an appropriate
feature mapping. As a motivating (and very Canadien) example, let us say
we want to build a classifier that, given a time and a location, can predict
whether or not it would be possible to ski nearby. To keep things simple, the
time is represented as month of the year and the location is represented as

CS229 Fall 2018 2

a latitude (how far North or South we are with —90°, 0°, and 90° being the
South Pole, Equator, and North Pole, respectively).

wlge mmmm === 0O
o

A representative dataset is shown above left. There is no linear boundary
that would correctly split this dataset. However, we can recognize that there
are different areas of positive and negative space we wish to isolate, one such
division being shown above right. We accomplish this by partitioning the
input space & into disjoint subsets (or regions) R;:

xX=JR
i=0
s.t. RiNR; =0 for i #j

where n € ZT.

2 Selecting Regions

In general, selecting optimal regions is intractable. Decision trees generate
an approximate solution via greedy, top-down, recursive partitioning.
The method is top-down because we start with the original input space X
and split it into two child regions by thresholding on a single feature. We
then take one of these child regions and can partition via a new threshold. We
continue the training of our model in a recursive manner, always selecting
a leaf node, a feature, and a threshold to form a new split. Formally, given
a parent region R, a feature index j, and a threshold ¢t € R, we obtain two
child regions R; and R, as follows:

Rlz{X|Xj<t,X€Rp}
Ro={X|X,>tX€R,)

CS229 Fall 2018 3

The beginning of one such process is shown below applied to the skiing
dataset. In step a, we split the input space X by the location feature, with
a threshold of 15, creating child regions Ry and R,. In step b, we then
recursively select one of these child regions (in this case Ry) and select a
feature (time) and threshold (3), generating two more child regions (Ry; and
Rs). In step ¢, we select any one of the remaining leaf nodes (R, Rai, Rao).
We can continue in such a manner until we a meet a given stop criterion
(more on this later), and then predict the majority class at each leaf node.

o o
- Ry
°
o 08 °
_ ° °
bommmiam e eeeaa [——
° o °

z " o o
R Y N
g o °o
k| > .
° o
° R, °°
o 1 o
) o
© o
o
OO o o o
90
v 2 3 4 s 910 R

o ©
! ! b

. ! o o
Lo ° Y
P,
Ran'i o Ra
o o8
.
T Leo-=mda I A —

Y

<

@ o
© o
o o . Y
]
"Time (months)
!) o
! o
1 O
? ° o
Roi ' o Roo
1 o 9
o o
' o °
© = = =t = i, Qemmm -
[} oo [}
Ri2 °

CS229 Fall 2018 4

3 Defining a Loss Function

A natural question to ask at this point is how to choose our splits. To do so,
it is first useful to define our loss L as a set function on a region R. Given
a split of a parent R, into two child regions R, and Ry, we can compute
the loss of the parent L(R,) as well as the cardinality-weighted loss of the
children |R1‘L(|};11)|1IE§IL(R2). Within our greedy partitioning framework, we
want to select the leaf region, feature, and threshold that will maximize our

decrease in loss:

B |R1|L(Ry) + |R2|L(R2)
|R1| + | Ra
For a classification problem, we are interested in the misclassification

loss Lisciass- For a region R let p. be the proportion of examples in R that
are of class c. Misclassification loss on R can be written as:

L(Ry)

Lmisclass(R) =1- maX(ﬁc)

We can understand this as being the number of examples that would be
misclassified if we predicted the majority class for region R (which is exactly
what we do). While misclassification loss is the final value we are interested
in, it is not very sensitive to changes in class probabilities. As a representative
example, we show a binary classification case below. We explicitly depict the
parent region I, as well as the positive and negative counts in each region.

Y Y Y A\

Ry: 150 4+ / 100 - |R2:250+/0—| |R’1:300+/100—| R,: 100 + / O -

The first split is isolating out more of the positives, but we note that:

_IRIL(R) + [Ro|L(Rs) _ |RYIL(RY) + | RYIL(RY)

L(R =100
(7,) Rl + R R, + 5]

Thus, not only can we not only are the losses of the two splits identical,
but neither of the splits decrease the loss over that of the parent.

CS229 Fall 2018 5

We therefore are interested in defining a more sensitive loss. While several
have been proposed, we will focus here on the cross-entropy 1oss Leoss:

Lcross<R) - - Zﬁc 10g2]A)c

With plog,p = 0 if p = 0. From an information-theoretic perspective,
cross-entropy measure the number of bits needed to specify the outcome (or
class) given that the distribution is known. Furthermore, the reduction in
loss from parent to child is known as information gain.

To understand the relative sensitivity of cross-entropy loss with respect
to misclassification loss, let us look at plots of both loss functions for the
binary classification case. For these cases, we can simplify our loss functions
to depend on just the proportion of positive examples p; in a region R;:

Lmisclass(R) = Lmisclass (ﬁ) =1- max(ﬁ, 1-]5)
Lcross<R) — Lcross(ﬁ) - _]5 lOgﬁ - (1 - ﬁ) log (1 - ﬁ)

L(Rp) L(R1)

!
1
! \
[IA
Ri[L(R)HRoL(Rs) g\
[Ra[+/Ra|

/ \
/ \

op

misclassification loss

/ \
/ L(R») \ L(Rz)
0 . 0 .

05 1 5
P P

In the figure above on the left, we see the cross-entropy loss plotted over
p. We take the regions (R, R, Ry) from the previous page’s example’s first
split, and plot their losses as well. As cross-entropy loss is strictly concave,
it can be seen from the plot (and easily proven) that as long as p; # po
and both child regions are non-empty, then the weighted sum of the children
losses will always be less than that of the parent.

Misclassification loss, on the other hand, is not strictly concave, and
therefore there is no guarantee that the weighted sum of the children will be
less than that of the parent, as shown above right, with the same partition.
Due to this added sensitivity, cross-entropy loss (or the closely related Gini
loss) are used when growing decision trees for classification.

Before fully moving away from loss functions, we briefly cover the regres-
sion setting for decision trees. For each data point z; we now instead have an

Fred
高亮

CS229 Fall 2018 6

associated value y; € R we wish to predict. Much of the tree growth process
remains the same, with the differences being that the final prediction for a
region R is the mean of all the values:

§ = ZiER Yi
| B
And in this case we can directly use the squared loss to select our splits:

ZieR(yi - j&)2

quuared(R) = ’R‘

4 Other Considerations

The popularity of decision trees can in large part be attributed to the ease
by which they are explained and understood, as well as the high degree of
interpretability they exhibit: we can look at the generated set of thresholds
to understand why a model made specific predictions. However, that is not
the full picture — we will now cover some additional salient points.

4.1 Categorical Variables

Another advantage of decision trees is that they can easily deal with cat-
egorical variables. As an example, our location in the skiing dataset could
instead be represented as a categorical variable (one of Northern Hemisphere,
Southern Hemisphere, or Equator (i.e. loc € {N, S, E'})). Rather than use a
one-hot encoding or similar preprocessing step to transform the data into a
quantitative feature, as would be necessary for the other algorithms we have
seen, we can directly probe subset membership. The final tree in Section 2
can be re-written as:

CS229 Fall 2018 7

A caveat to the above is that we must take care to not allow a variable
to have too many categories. For a set of categories S, our set of possible
questions is the power set P(S), of cardinality 2/°!. Thus, a large number of
categories makes question selectioin computationally intractable. Optimiza-
tions are possible for the binary classification, though even in this case serious
consideration should be given to whether the feature can be re-formulated
as a quantitative one instead as the large number of possible thresholds lend
themselves to a high degree of overfitting.

4.2 Regularization

In Section 2 we alluded to various stopping criteria we could use to deter-
mine when to halt the growth of a tree. The simplest criteria involves " fully”
growning the tree: we continue until each leaf region contains exactly one
training data point. This technique however leads to a high variance and low
bias model, and we therefore turn to various stopping heuristics for regular-
ization. Some common ones include:

e Minimum Leaf Size — Do not split R if its cardinality falls below a
fixed threshold.

e Maximum Depth — Do not split R if more than a fixed threshold of
splits were already taken to reach R.

e Maximum Number of Nodes — Stop if a tree has more than a fixed
threshold of leaf nodes.

A tempting heuristic to use would be to enforce a minimum decrease
in loss after splits. This is a problematic approach as the greedy, single-
feature at a time approach of decision trees could mean missing higher order
interactions. If we require thresholding on multiple features to achieve a good
split, we might be unable to achieve a good decrease in loss on the initial
splits and therefore prematurely terminate. A better approach involves fully
growing out the tree, and then pruning away nodes that minimally decrease
misclassification or squared error, as measured on a validation set.

4.3 Runtime

We briefly turn to considering the runtime of decision trees. For ease of
analysis, we will consider binary classification with n examples, f features,
and a tree of depth d. At test time, for a data point we traverse the tree

CS229 Fall 2018 8

until we reach a leaf node and then output its prediction, for a runtime of
O(d). Note that if our tree is balanced than d = O(logn), and thus test time
performance is generally quite fast.

At training time, we note that each data point can only appear in at most
O(d) nodes. Through sorting and intelligent caching of intermediate values,
we can achieve an amortized runtime of O(1) at each node for a single data
point for a single feature. Thus, overall runtime is O(nfd) — a fairly fast
runtime as the data matrix alone is of size nf.

4.4 Lack of Additive Structure

One important downside to consider is that decision trees can not easily
capture additive structure. For example, as seen below on the left, a simple
decision boundary of the form z; + x5 could only be approximately modeled
through the use of many splits, as each split can only consider one of x; or
To at a time. A linear model on the other hand could directly derive this
boundary, as shown below right.

While there has been some work in allowing for decision boundaries that
factor in many features at once, they have the downside of further increasing
variance and reducing interpretability.

CS229 Fall 2018 9

5 Recap
To summarize, some of the primary benefits of decision trees are:

+ Easy to explain
+ Interpretable
+ Categorical variable support

+ Fast
While some of the disadvantages include:

— High variance

— Poor additive modeling

Unfortunately, these problems tend to cause individual decision trees to
have low overall predictive accuracy. A common (and successful) way to
address these issues is through ensembling methods — our next topic of dis-
cussion.

