
CS229 Lecture notes

Raphael John Lamarre Townshend

Ensembling Methods
We now cover methods by which we can aggregate the output of trained
models. We will use Bias-Variance analysis as well as the example of decision
trees to probe some of the trade-offs of each of these methods.

To understand why we can derive benefit from ensembling, let us first
recall some basic probability theory. Say we have n independent, identically
distributed (i.i.d.) random variables Xi for 0 ≤ i < n. Assume Var(Xi) = σ2

for all Xi. Then we have that the variance of the mean is:

Var(X̄) = Var(
1

n

∑
i

Xi) =
σ2

n

Now, if we drop the independence assumption (so the variables are only
i.d.), and instead say that the Xi’s are correlated by a factor ρ, we can show
that:

Var(X̄) =Var(
1

n

∑
i

Xi) (1)

=
1

n2

∑
i,j

Cov(Xi, Xj) (2)

=
nσ2

n2
+
n(n− 1)ρσ2

n2
(3)

=ρσ2 +
1− ρ
n

σ2 (4)

Where in Step 3 we use the definition of pearson correlation coefficient
ρX,Y = Cov(X,Y)

σxσy
and that Cov(X,X) = Var(X).

Now, if we consider each random variable to be the error of a given model,
we can see that both increasing the number of models used (causing the

1

CS229 Fall 2018 2

second term to vanish) as well as decreasing the correlation between models
(causing the first term to vanish and returning us to the i.i.d. definition)
leads to an overall decrease in variance of the error of the ensemble.

There are several ways by which we can generate de-correlated models,
including:

• Using different algorithms

• Using different training sets

• Bagging

• Boosting

While the first two are fairly straightforward, they involve large amounts
of additional work. In the following sections, we will cover the latter two
techniques, boosting and bagging, as well as their specific uses in the context
of decision trees.

1 Bagging

1.1 Boostrap

Bagging stands for ”Boostrap Aggregation” and is a variance reduction
ensembling method. Bootstrap is a method from statistics traditionally
used to measure uncertainty of some estimator (e.g. mean).

Say we have a true population P that we wish to compute an estimator
for, as well a training set S sampled from P (S ∼ P). While we can find
an approximation by computing the estimator on S, we cannot know what
the error is with respect to the true value. To do so we would need multiple
independent training sets S1, S2, ... all sampled from P .

However, if we make the assumption that S = P , we can generate a new
bootstrap set Z sampled with replacement from S (Z ∼ S, |Z| = |S|). In
fact we can generate many such samples Z1, Z2, ..., ZM . We can then look at
the variability of our estimate across these bootstrap sets to obtain a measure
of error.

1.2 Aggregation

Now, returning to ensembling, we can take each Zm and train a machine
learning model Gm on each, and define a new aggregate predictor:

Fred
高亮

CS229 Fall 2018 3

G(X) =
∑
m

Gm(x)

M

This process is called bagging. Referring back to equation (4), we have
that the variance of M correlated predictors is:

V ar(X̄) = ρσ2 +
1− ρ
M

σ2

Bagging creates less correlated predictors than if they were all simply
trained on S, thereby decreasing ρ. While the bias of each individual predic-
tor increases due to each bootstrap set not having the full training set avail-
able, in practice it has been found that the decrease in variance outweighs
the increase in bias. Also note that increasing the number of predictors M
can’t lead to additional overfitting, as ρ is insensitive to M and therefore
overall variance can only decrease.

An additional advantage of bagging is called out-of-bag estimation. It
can be shown that each bootstrapped sample only contains approximately
2
3

of S, and thus we can use the other 1
3

as an estimate of error, called out-
of-bag error. In the limit, as M → ∞, out-of-bag error gives an equivalent
result to leave-one-out cross-validation.

1.3 Bagging + Decision Trees

Recall that fully-grown decision trees are high variance, low bias models, and
therefore the variance-reducing effects of bagging work well in conjunction
with them. Bagging also allows for handling of missing features: if a feature
is missing, exclude trees in the ensemble that use that feature in our of their
splits. Though if certain features are particularly powerful predictors they
may still be included in most if not all trees.

A downside to bagged trees is that we lose the interpretability inherent
in the single decision tree. One method by which to re-gain some amount
of insight is through a technique called variable importance measure.
For each feature, find each split that uses it in the ensemble and average
the decrease in loss across all such splits. Note that this is not the same
as measuring how much performance would degrade if we did not have this
feature, as other features might be correlated and could substitute.

A final but important aspect of bagged decision trees to cover is the
method of random forests. If our dataset contained one very strong pre-
dictor, then our bagged trees would always use that feature in their splits
and end up correlated. With random forests, we instead only allow a subset

CS229 Fall 2018 4

of features to be used at each split. By doing so, we achieve a decrease in
correlation ρ which leads to a decrease in variance. Again, there is also an
increase in bias due to the restriction of the feature space, but as with vanilla
bagged decision trees this proves to not often be an issue. Finally, even pow-
erful predictors will no longer be present in every tree (assuming sufficient
number of trees and sufficient restriction of features at each split), allowing
for more graceful handling of missing predictors.

1.4 Recap

To summarize, some of the primary benefits of bagging, in the context of
decision trees, are:

+ Decrease in variance (even more so for random forests)

+ Better accuracy

+ Free validation set

+ Support for missing values

While some of the disadvantages include:

− Incrase in bias (even more so for random forests)

− Harder to interpret

− Still not additive

− More expensive

2 Boosting

2.1 Intuition

Bagging is a variance-reducing technique, whereas boosting is used for bias-
reduction. We therefore want high bias, low variance models, also known
as weak learners. Continuing our exploration via the use of decision trees,
we can make them into weak learners by allowing each tree to only make one
decision before making a prediction; these are known as decision stumps.

CS229 Fall 2018 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

We explore the intuition behind boosting via the example above. We start
with a dataset on the left, and allow a single decision stump to be trained, as
seen in the middle panel. The key idea is that we then track which examples
the classifier got wrong, and increase their relative weight compared to the
correctly classified examples. We then train a new decision stump which will
be more incentivized to correctly classify these ”hard negatives.” We continue
as such, incrementally re-weighting examples at each step, and at the end we
output a combination of these weak learners as an ensemble classifier.

2.2 Adaboost

Having covered the intuition, let us look at one of the most popular boosting
algorithms, Adaboost, reproduced below:

Algorithm 0: Adaboost

Input: Labeled training data (x1, y1), (x2, y2), ... (xN , yN)
Output: Ensemble classifer f(x)

1 wi ← 1
N

for i = 1, 2..., N
2 for m = 0 to M do
3 Fit weak classifier Gm to training data weighted by wi

4 Compute weighted error errm =
∑

i wi1(yi 6=Gm(xi))∑
wi

5 Compute weight αm = log(1−errm
errm

)

6 wi ← wi ∗ exp(αm1(yi 6= Gm(xi)))

7 end
8 f(x) = sign(

∑
m αmGm(x))

The weightings for each example begin out even, with misclassified ex-
amples being further up-weighted at each step, in a cumulative fashion. The
final aggregate classifier is a summation of all the weak learners, weighted by
the negative log-odds of the weighted error.

We can also see that due to the final summation, this ensembling method
allows for modeling of additive terms, increasing the overall modeling capa-
bility (and variance) of the final model. Each new weak learner is no longer

CS229 Fall 2018 6

independent of the previous models in the sequence, meaning that increasing
M leads to an increase in the risk of overfitting.

The exact weightings used for Adaboost appear to be somewhat arbitrary
at first glance, but can be shown to be well justified. We shall approach this
in the next section through a more general framework of which Adaboost is
a special case.

2.3 Forward Stagewise Additive Modeling

The Forward Stagewise Additive Modeling algorithm reproduced below
is a framework for ensembling :

Algorithm 1: Forward Stagewise Additive Modeling

Input: Labeled training data (x1, y1), (x2, y2), ... (xN , yN)
Output: Ensemble classifer f(x)

1 Initialize f0(x) = 0
2 for m = 0 to M do

3 Compute (βm, γm) = argminβ,γ
∑N

i=1 L(yi, fm−1(xi) + βG(xi; γ))

4 Set fm(x) = fm−1(x) + βmG(x; yi)

5 end
6 f(x) = fm(x)

Close inspection reveals that few assumptions are made about the learn-
ing problem at hand, the only major ones being the additive nature of the
ensembling as well as the fixing of all previous weightings and parameters
after a given step. We again have weak classifiers G(x), though this time
we explicitly parameterize them by their parameters γ. At each step we are
trying to find the next weak learner’s parameters and weighting so to best
match the remaining error of the current ensemble.

As a concrete implementation of this algorithm, using a squared loss
would be the same as fitting individual classifiers to the residual yi−fm−1(xi).
Furthermore, it can be shown that Adaboost is a special case of this formu-
lation, specifically for 2-class classification and exponential loss:

L(y, ŷ) = exp(−yŷ)

For further details regarding the connection between Adaboost and For-
ward Stagewise Additive Modeling, the interested reader is referred to 10.4
Elements of Statistical Learning.

CS229 Fall 2018 7

2.4 Gradient Boosting

In general, it is not always easy to write out a closed-form solution to the
minimization problem presented in Forward Stagewise Additive Modeling.
High-performing methods such as xgboost resolve this issue by turning to
numerical optimization.

One of the most obvious things to do in this case would be to take the
derivative of the loss and perform gradient descent. However, the compli-
cation is that we are restricted to taking steps in our model class – we can
only add in parameterized weak learners G(x, γ), not make arbitrary moves
in the input space.

In gradient boosting, we instead compute the gradient at each training
point with respect to the current predictor (typically a decision stump):

gi =
∂L(y, f(xi))

∂f(xi)

We then train a new regression predictor to match this gradient and use
it as the gradient step. In Forward Stagewise Additive Modeling, this works
out to:

γi = argminγ

N∑
i=1

(gi −G(xi; γ))2

2.5 Recap

To summarize, some of the primary benefits of boosting are:

+ Decrease in bias

+ Better accuracy

+ Additive modeling

While some of the disadvantages include:

− Increase in variance

− Prone to overfitting

For more on the theory behind boosting, John Duchi’s excellent supple-
mental lecture notes are recommended.

