(CS229 Problem Set #1 1

CS 229, Fall 2018
Problem Set #1: Supervised Learning

Due Wednesday, Oct 17 at 11:59 pm on Gradescope.

Notes: (1) These questions require thought, but do not require long answers. Please be as
concise as possible. (2) If you have a question about this homework, we encourage you to post
your question on our Piazza forum, at http://piazza.com/stanford/fall2018/cs229. (3) If
you missed the first lecture or are unfamiliar with the collaboration or honor code policy, please
read the policy on Handout #1 (available from the course website) before starting work. (4)
For the coding problems, you may not use any libraries except those defined in the provided
environment.yml file. In particular, ML-specific libraries such as scikit-learn are not permitted.
(5) To account for late days, the due date listed on Gradescope is Oct 20 at 11:59 pm. If you
submit after Oct 17, you will begin consuming your late days. If you wish to submit on time,
submit before Oct 17 at 11:59 pm.

All students must submit an electronic PDF version of the written questions. We highly recom-
mend typesetting your solutions via INTEX. If you are scanning your document by cell phone,
please check the Piazza forum for recommended scanning apps and best practices. All students
must also submit a zip file of their source code to Gradescope, which should be created using
the make _zip.py script. In order to pass the auto-grader tests, you should make sure to (1)
restrict yourself to only using libraries included in the environment.yml file, and (2) make sure
your code runs without errors using the run.py script. Your submission will be evaluated by
the auto-grader using a private test set.

Honor code: We strongly encourage students to form study groups. Students may discuss and
work on homework problems in groups. However, each student must write down the solutions
independently, and without referring to written notes from the joint session. In other words,
each student must understand the solution well enough in order to reconstruct it by him/herself.
In addition, each student should write on the problem set the set of people with whom s/he
collaborated. Further, because we occasionally reuse problem set questions from previous years,
we expect students not to copy, refer to, or look at the solutions in preparing their answers. It
is an honor code violation to intentionally refer to a previous year’s solutions.

(CS229 Problem Set #1 2

1. [40 points] Linear Classifiers (logistic regression and GDA)

In this problem, we cover two probabilistic linear classifiers we have covered in class so far.
First, a discriminative linear classifier: logistic regression. Second, a generative linear classifier:
Gaussian discriminant analysis (GDA). Both the algorithms find a linear decision boundary that
separates the data into two classes, but make different assumptions. Our goal in this problem is
to get a deeper understanding of the similarities and differences (and, strengths and weaknesses)
of these two algorithms.

For this problem, we will consider two datasets, provided in the following files:

i. data/ds1_{train,valid}.csv

ii. data/ds2_{train,valid}.csv

Each file contains m examples, one example (:C(i),y(i)) per row. In particular, the i-th row
contains columns CL‘(()Z) € R, J:gl) € R, and y) € {0,1}. In the subproblems that follow, we
will investigate using logistic regression and Gaussian discriminant analysis (GDA) to perform
binary classification on these two datasets.

(a) [10 points] In lecture we saw the average empirical loss for logistic regression:

T) =3y log(he(x ™) + (1 - y) log(1L — ho(a?))

i=1

where y() € {0,1}, hg(z) = g(0Tx) and g(2) = 1/(1 4+ e~ ?).
Find the Hessian H of this function, and show that for any vector z, it holds true that

2THz > 0.

Hint: You may want to start by showing that >, >, z;z,2;2; = (x72)2 > 0. Recall also
that g'(z) = g(2)(1 — g(2)).

Remark: This is one of the standard ways of showing that the matrix H is positive semi-
definite, written “H > 0.” This implies that J is convex, and has no local minima other
than the global one. If you have some other way of showing H > 0, you're also welcome to
use your method instead of the one above.

(b) [5 points] Coding problem. Follow the instructions in src/pOlb_logreg.py to train a
logistic regression classifier using Newton’s Method. Starting with § = 0, run Newton’s
Method until the updates to 6 are small: Specifically, train until the first iteration k£ such
that ||0x — 0x_1]]1 < €, where e = 1 x 107°. Make sure to write your model’s predictions to
the file specified in the code.

(c) [5 points] Recall that in GDA we model the joint distribution of (z,y) by the following
equations:

() = 10} ify=1
PI= Y129 ify=0

1 1 _
plzly=0) = WWGXP<2($FLO)TE 1(50*#0)

plrly=1) = WGXP (—;(x—ul)TZ_l(x—u1)>,

(CS229 Problem Set #1 3

where ¢, ug, 1, and X are the parameters of our model.

Suppose we have already fit ¢, pg, p1, and 3, and now want to predict y given a new point
x. To show that GDA results in a classifier that has a linear decision boundary, show the
posterior distribution can be written as

B 1

1+ exp(—(0Tx + 6y))’

where 6 € R™ and 6y € R are appropriate functions of ¢, 3, pg, and 1.

py=1]z;0, o, p1,%)

[7 points] For this part of the problem only, you may assume n (the dimension of z) is 1, so
that ¥ = [0?] is just a real number, and likewise the determinant of ¥ is given by || = o2.
Given the dataset, we claim that the maximum likelihood estimates of the parameters are
given by

IR S e
¢ = m;Hy =1}

S, 1y = 0}

Ho = -
Eiil 1{3/(2) =0}
_ 27:'1 1{y(i) - 1}z(i)
T Yy =1y
1 &) .
E = E Z(‘/L’(l) - :uy(’i))(m(l) - /J‘y(i))T
i=1

The log-likelihood of the data is

€(¢,M0,M172> = long(x(l)7y(Z),¢aM07,ul7Z)
i=1

log [[(= 1y ; 10, 11, 2)p(y?;).
=1

By maximizing ¢ with respect to the four parameters, prove that the maximum likelihood
estimates of @, o, 1, and ¥ are indeed as given in the formulas above. (You may assume
that there is at least one positive and one negative example, so that the denominators in
the definitions of o and p; above are non-zero.)

[3 points] Coding problem. In src/pOle_gda.py, fill in the code to calculate ¢, uo,
11, and X, use these parameters to derive 6, and use the resulting GDA model to make
predictions on the validation set.

[5 points] For Dataset 1, create a plot of the training data with 27 on the horizontal axis, and
x5 on the vertical axis. To visualize the two classes, use a different symbol for examples z(?)
with 4 = 0 than for those with y¥ = 1. On the same figure, plot the decision boundary
found by logistic regression in part (b). Make an identical plot with the decision boundary
found by GDA in part (e).

[5 points] Repeat the steps in part (f) for Dataset 2. On which dataset does GDA seem to
perform worse than logistic regression? Why might this be the case?

[3 extra credit points] For the dataset where GDA performed worse in parts (f) and (g),
can you find a transformation of the #(?)’s such that GDA performs significantly better?
What is this transformation?

(CS229 Problem Set #1 4

2. [30 points] Incomplete, Positive-Only Labels

In this problem we will consider training binary classifiers in situations where we do not have
full access to the labels. In particular, we consider a scenario, which is not too infrequent in real
life, where we have labels only for a subset of the positive examples. All the negative examples
and the rest of the positive examples are unlabelled.

That is, we assume a dataset {(z(", ¢t y@)}m =~ where t() € {0,1} is the “true” label, and
where
@) {1 2@ is labeled
Yy = .
0 otherwise.

All labeled examples are positive, which is to say p(t®) = 1 | y@ = 1) = 1, but unlabeled
examples may be positive or negative. Our goal in the problem is to construct a binary classifier
h of the true label ¢, with only access to the partial labels y. In other words, we want to construct
h such that h(z®) ~ p(t() =1 | 2(9) as closely as possible, using only = and y.

Real world example: Suppose we maintain a database of proteins which are involved in transmit-
ting signals across membranes. Fvery example added to the database is involved in a signaling
process, but there are many proteins involved in cross-membrane signaling which are missing
from the database. It would be useful to train a classifier to identify proteins that should be
added to the database. In our notation, each example ¥ corresponds to a protein, y(» = 1
if the protein is in the database and 0 otherwise, and t) = 1 if the protein is involved in a
cross-membrane signaling process and thus should be added to the database, and 0 otherwise.

(a) [5 points] Suppose that each y and () are conditionally independent given ¢(*):
p(y(i) =1| @& — Lx(i)) — p(y(i) =1] @) — 1).

Note this is equivalent to saying that labeled examples were selected uniformly at random
from the set of positive examples. Prove that the probability of an example being labeled
differs by a constant factor from the probability of an example being positive. That is,
show that p(t®) =1 | 2) = p(y® =1 | 2)/a for some o € R.

(b) [5 points] Suppose we want to estimate o using a trained classifier h and a held-out validation
set V. Let Vi be the set of labeled (and hence positive) examples in V', given by V, =
{z) € V |y = 1}. Assuming that h(z?) =~ p(y® = 1| 2*) for all examples z(*), show
that _ '

h(z) ~ a for all 29 € V.
You may assume that p(t®) =1 | 2(9) ~ 1 when () € V.

(¢) [5 points] Coding problem. The following three problems will deal with a dataset which

we have provided in the following files:

data/ds3_{train,valid,test}.csv
Each file contains the following columns: z1, x2, y, and t. As in Problem 1, there is one
example per row.

First we will consider the ideal case, where we have access to the true ¢-labels for training.
In src/pO2cde_posonly, write a logistic regression classifier that uses z; and zo as input
features, and train it using the ¢-labels (you can ignore the y-labels for this part). Output
the trained model’s predictions on the test set to the file specified in the code.

(CS229 Problem Set #1 5

(d) [5 points] Coding problem. We now consider the case where the t-labels are unavail-
able, so you only have access to the y-labels at training time. Add to your code in
pO2cde_posonly.py to re-train the classifier (still using x; and x5 as input features), but
using the y-labels only.

(e) [10 points] Coding problem. Using the validation set, estimate the constant a by aver-
aging your classifier’s predictions over all labeled examples in the validation set:

1 .
o — h(z().
v 2 e

(%) EV+

Add code in src/p02cde_posonly.py to rescale your classifier’s predictions from part (d)
using the estimated value for a.

Finally, using a threshold of p(t®) = 1 | () = 0.5, make three separate plots with the
decision boundaries from parts (c) - (e) plotted on top of the test set. Plot z; on the
horizontal axis and zo on the vertical axis, and use two different symbols for the positive
(t@) = 1) and negative (t(") = 0) examples. In each plot, indicate the separating hyperplane
with a red line.

Remark: We saw that the true probability p(¢ |) was only a constant factor away from
p(y |). This means, if our task is to only rank examples (i.e. sort them) in a particular order
(e.g, sort the proteins in order of being most likely to be involved in transmitting signals across
membranes), then in fact we do not even need to estimate . The rank based on p(y | x) will
agree with the rank based on p(t | z).

(CS229 Problem Set #1 6

3. [25 points] Poisson Regression

(a)

[5 points] Consider the Poisson distribution parameterized by A:

e~V

p(y; \) = m

Show that the Poisson distribution is in the exponential family, and clearly state the values
for b(y), n, T(y), and a(n).

[3 points] Consider performing regression using a GLM model with a Poisson response
variable. What is the canonical response function for the family? (You may use the fact
that a Poisson random variable with parameter A has mean A.)

[7 points] For a training set {(z(?,y(®); i = 1,...,m}, let the log-likelihood of an example
be log p(yV|2(¥); 0). By taking the derivative of the log-likelihood with respect to 6;, derive
the stochastic gradient ascent update rule for learning using a GLM model with Poisson
responses y and the canonical response function.

[7 points] Coding problem. Consider a website that wants to predict its daily traffic.
The website owners have collected a dataset of past traffic to their website, along with
some features which they think are useful in predicting the number of visitors per day. The
dataset is split into train/valid/test sets and follows the same format as Datasets 1-3:

data/ds4_{train,valid}.csv

We will apply Poisson regression to model the number of visitors per day. Note that ap-
plying Poisson regression in particular assumes that the data follows a Poisson distribution
whose natural parameter is a linear combination of the input features (i.e., n = 07x).
In src/p03d_poisson.py, implement Poisson regression for this dataset and use gradient
ascent to maximize the log-likelihood of 6.

(CS229 Problem Set #1 7

4. [15 points] Convexity of Generalized Linear Models

In this question we will explore and show some nice properties of Generalized Linear Models,
specifically those related to its use of Exponential Family distributions to model the output.

Most commonly, GLMs are trained by using the negative log-likelihood (NLL) as the loss func-
tion. This is mathematically equivalent to Maximum Likelihood Estimation (i.e., maximizing
the log-likelihood is equivalent to minimizing the negative log-likelihood). In this problem, our
goal is to show that the NLL loss of a GLM is a convex function w.r.t the model parameters.
As a reminder, this is convenient because a convex function is one for which any local minimum
is also a global minimum.

To recap, an exponential family distribution is one whose probability density can be represented

p(yin) = b(y) exp(n” T(y) — a(n)),

where 7 is the natural parameter of the distribution. Moreover, in a Generalized Linear Model, n
is modeled as 87z, where x € R” are the input features of the example, and € R™ are learnable
parameters. In order to show that the NLL loss is convex for GLMs, we break down the process
into sub-parts, and approach them one at a time. Our approach is to show that the second
derivative (i.e., Hessian) of the loss w.r.t the model parameters is Positive Semi-Definite (PSD)
at all values of the model parameters. We will also show some nice properties of Exponential
Family distributions as intermediate steps.

For the sake of convenience we restrict ourselves to the case where 7 is a scalar. Assume
p(Y]X;0) ~ ExponentialFamily(n), where n € R is a scalar, and T(y) = y. This makes the
exponential family representation take the form

p(y;n) = b(y) exp(ny — a(n)).

(a) [5 points] Derive an expression for the mean of the distribution. Show that E[Y | X; 6] can
be represented as the gradient of the log-partition function a with respect to the natural
parameter 7.

Hint: Start with observing that % [p(y;m)dy = [C%p(y;n)dy.

(b) [5 points] Next, derive an expression for the variance of the distribution. In particular,
show that Var(Y | X;0) can be expressed as the derivative of the mean w.r.t n (i.e., the
second derivative of the log-partition function a(n) w.r.t the natural parameter 7.)

(c) [5 points] Finally, write out the loss function £(6), the NLL of the distribution, as a function
of 6. Then, calculate the Hessian of the loss w.r.t 6, and show that it is always PSD. This
concludes the proof that NLL loss of GLM is convex.

Hint: Use the chain rule of calculus along with the results of the previous parts to simplify
your derivations.

Remark: The main takeaways from this problem are:

e Any GLM model is convex in its model parameters.

e The exponential family of probability distributions are mathematically nice. Whereas cal-
culating mean and variance of distributions in general involves integrals (hard), surprisingly
we can calculate them using derivatives (easy) for exponential family.

(CS229 Problem Set #1 8

5. [25 points] Locally weighted linear regression

(a) [10 points] Consider a linear regression problem in which we want to “weight” different
training examples differently. Specifically, suppose we want to minimize

J(0) = % i w® (ngu) _ y@)?
1=1

In class, we worked out what happens for the case where all the weights (the w(i)’s) are the
same. In this problem, we will generalize some of those ideas to the weighted setting.

i. [2 points] Show that J(6) can also be written
J(0) = (X0 —y)"W (X0 —y)

for an appropriate matrix W, and where X and y are as defined in class. Clearly specify
the value of each element of the matrix W.

ii. [4 points] If all the w()’s equal 1, then we saw in class that the normal equation is
XTX0=XTy,

and that the value of # that minimizes J(#) is given by (X7 X)"'X7y. By finding
the derivative VyJ(#) and setting that to zero, generalize the normal equation to this
weighted setting, and give the new value of # that minimizes J(6) in closed form as a
function of X, W and y.

iii. [4 points] Suppose we have a dataset {(z(,y®);i = 1...,m} of m independent ex-
amples, but we model the y(?’s as drawn from conditional distributions with different
levels of variance (o(i))z. Specifically, assume the model

N 1 () — 6T ()2
()]0 9) = _ /.
Pyl 6) o T (2(0®)2

That is, each y(*) is drawn from a Gaussian distribution with mean #72z(%) and variance
(0M)2 (where the ¢()’s are fixed, known, constants). Show that finding the maximum
likelihood estimate of 8 reduces to solving a weighted linear regression problem. State
clearly what the w("’s are in terms of the o(?)’s.

(b) [10 points] Coding problem. We will now consider the following dataset (the formatting
matches that of Datasets 1-4, except z(9 is 1-dimensional):

data/ds5_{train,valid,test}.csv

In src/p05b_lwr.py, implement locally weighted linear regression using the normal equa-
tions you derived in Part (a) and using

(@) — |12
() — . &3 |3
w exp (o)

Train your model on the train split using 7 = 0.5, then run your model on the valid split
and report the mean squared error (MSE). Finally plot your model’s predictions on the
validation set (plot the training set with blue ‘x’ markers and the validation set with a red
‘o’ markers). Does the model seem to be under- or overfitting?

(CS229 Problem Set #1 9

(¢) [5 points] Coding problem. We will now tune the hyperparameter 7. In src/p05c_tau.py,
find the MSE value of your model on the validation set for each of the values of 7 specified
in the code. For each 7, plot your model’s predictions on the validation set in the format
described in part (b). Report the value of 7 which achieves the lowest MSE on the valid
split, and finally report the MSE on the test split using this 7-value.

