
CS229 Problem Set #2 1

CS 229, Fall 2018
Problem Set #2: Supervised Learning II

Due Wednesday, Oct 31 at 11:59 pm on Gradescope.

Notes: (1) These questions require thought, but do not require long answers. Please be as
concise as possible. (2) If you have a question about this homework, we encourage you to post
your question on our Piazza forum, at http://piazza.com/stanford/fall2018/cs229. (3) If
you missed the first lecture or are unfamiliar with the collaboration or honor code policy, please
read the policy on Handout #1 (available from the course website) before starting work. (4)
For the coding problems, you may not use any libraries except those defined in the provided
environment.yml file. In particular, ML-specific libraries such as scikit-learn are not permitted.
(5) To account for late days, the due date listed on Gradescope is Nov 03 at 11:59 pm. If you
submit after Oct 31, you will begin consuming your late days. If you wish to submit on time,
submit before Oct 31 at 11:59 pm.

All students must submit an electronic PDF version of the written questions. We highly recom-
mend typesetting your solutions via LATEX. If you are scanning your document by cell phone,
please check the Piazza forum for recommended scanning apps and best practices. All students
must also submit a zip file of their source code to Gradescope, which should be created using the
make zip.py script. In order to pass the auto-grader tests, you should make sure to (1) restrict
yourself to only using libraries included in the environment.yml file, and (2) make sure your
code runs without errors when running p05 percept.py and p06 spam.py. Your submission will
be evaluated by the auto-grader using a private test set.



CS229 Problem Set #2 2

1. [15 points] Logistic Regression: Training stability

In this problem, we will be delving deeper into the workings of logistic regression. The goal of
this problem is to help you develop your skills debugging machine learning algorithms (which
can be very different from debugging software in general).

We have provided a implementation of logistic regression in src/p01 lr.py, and two labeled
datasets A and B in data/ds1 a.txt and data/ds1 b.txt

Please do not modify the code for the logistic regression training algorithm for this problem.
First, run the given logistic regression code to train two different models on A and B. You can
run the code by simply executing python p01 lr.py in the src directory.

(a) [2 points] What is the most notable difference in training the logistic regression model on
datasets A and B?

(b) [5 points] Investigate why the training procedure behaves unexpectedly on dataset B, but
not on A. Provide hard evidence (in the form of math, code, plots, etc.) to corroborate
your hypothesis for the misbehavior. Remember, you should address why your explanation
does not apply to A.

Hint: The issue is not a numerical rounding or over/underflow error.

(c) [5 points] For each of these possible modifications, state whether or not it would lead to
the provided training algorithm converging on datasets such as B. Justify your answers.

i. Using a different constant learning rate.

ii. Decreasing the learning rate over time (e.g. scaling the initial learning rate by 1/t2,
where t is the number of gradient descent iterations thus far).

iii. Linear scaling of the input features.

iv. Adding a regularization term ‖θ‖22 to the loss function.

v. Adding zero-mean Gaussian noise to the training data or labels.

(d) [3 points] Are support vector machines, which use the hinge loss, vulnerable to datasets like
B? Why or why not? Give an informal justification.

Hint: Recall the distinction between functional margin and geometric margin.



CS229 Problem Set #2 3

2. [10 points] Model Calibration

In this question we will try to understand the output hθ(x) of the hypothesis function of a logistic
regression model, in particular why we might treat the output as a probability (besides the fact
that the sigmoid function ensures hθ(x) always lies in the interval (0, 1)).

When the probabilities outputted by a model match empirical observation, the model is said
to be well-calibrated (or reliable). For example, if we consider a set of examples x(i) for which
hθ(x

(i)) ≈ 0.7, around 70% of those examples should have positive labels. In a well-calibrated
model, this property will hold true at every probability value.

Logistic regression tends to output well-calibrated probabilities (this is often not true with other
classifiers such as Naive Bayes, or SVMs). We will dig a little deeper in order to understand why
this is the case, and find that the structure of the loss function explains this property.

Suppose we have a training set {x(i), y(i)}mi=1 with x(i) ∈ Rn+1 and y(i) ∈ {0, 1}. Assume we

have an intercept term x
(i)
0 = 1 for all i. Let θ ∈ Rn+1 be the maximum likelihood parameters

learned after training a logistic regression model. In order for the model to be considered well-
calibrated, given any range of probabilities (a, b) such that 0 ≤ a < b ≤ 1, and training examples
x(i) where the model outputs hθ(x

(i)) fall in the range (a, b), the fraction of positives in that set
of examples should be equal to the average of the model outputs for those examples. That is,
the following property must hold:∑

i∈Ia,b
P
(
y(i) = 1|x(i); θ

)
|{i ∈ Ia,b}|

=

∑
i∈Ia,b

I{y(i) = 1}
|{i ∈ Ia,b}|

,

where P (y = 1|x; θ) = hθ(x) = 1/(1 + exp(−θ>x)), Ia,b = {i|i ∈ {1, ...,m}, hθ(x(i)) ∈ (a, b)} is
an index set of all training examples x(i) where hθ(x

(i)) ∈ (a, b), and |S| denotes the size of the
set S.

(a) [5 points] Show that the above property holds true for the described logistic regression
model over the range (a, b) = (0, 1).

Hint : Use the fact that we include a bias term.

(b) [3 points] If we have a binary classification model that is perfectly calibrated—that is, the
property we just proved holds for any (a, b) ⊂ [0, 1]—does this necessarily imply that the
model achieves perfect accuracy? Is the converse necessarily true? Justify your answers.

(c) [2 points] Discuss what effect including L2 regularization in the logistic regression objective
has on model calibration.

Remark: We considered the range (a, b) = (0, 1). This is the only range for which logistic
regression is guaranteed to be calibrated on the training set. When the GLM modeling assump-
tions hold, all ranges (a, b) ⊂ [0, 1] are well calibrated. In addition, when the training and test set
are from the same distribution and when the model has not overfit or underfit, logistic regression
tends to be well-calibrated on unseen test data as well. This makes logistic regression a very
popular model in practice, especially when we are interested in the level of uncertainty in the
model output.



CS229 Problem Set #2 4

3. [20 points] Bayesian Interpretation of Regularization

Background: In Bayesian statistics, almost every quantity is a random variable, which can
either be observed, or unobserved. For instance, parameters θ are generally unobserved random
variables, and data x and y are observed random variables. The joint distribution of all the ran-
dom variables is also called the model (e.g p(x, y, θ)). Every unknown quantity can be estimated
by conditioning the model on all the observed quantities. Such a conditional distribution over
the unobserved random variables, conditioned on the observed random variables, is called the
posterior distribution. For instance p(θ|x, y) is the posterior distribution in the machine learning
context. A consequence of this approach is that, we are required to endow our model parameters,
i.e. p(θ), with a prior distribution. The prior probabilities are to be assigned before we see the
data – they need to capture our prior beliefs of what the model parameters might be before
observing any evidence, and must be a subjective opinion by the person building the model.

In the purest Bayesian interpretation, we are required to keep the entire posterior distribu-
tion over the parameters all the way until prediction, to come up with the posterior predictive
distribution, and the final prediction will be the expected value of the posterior predictive dis-
tribution. However in most situations, this is computationally very expensive, and we settle for
a compromise that is less pure (in the Bayesian sense).

The compromise is to estimate a point value of the parameters (instead of the full distribution)
which is the mode of the posterior distribution. Estimating the mode of the posterior distribution
is also called maximum a posteriori estimation (MAP). That is,

θMAP = arg max
θ
p(θ|x, y).

Compare this to the maximum likelihood estimation (MLE) we have seen previously:

θMLE = arg max
θ
p(y|x, θ).

In this problem, we explore the connection between MAP estimation, and common regularization
techniques that are applied with MLE estimation. In particular, you will show how the choice
of prior distribution over θ (e.g Gaussian, or Laplace prior) is equivalent to different kinds of
regularization (e.g L2, or L1 regularization). To show this, we shall proceed step by step, showing
intermediate steps.

(a) [3 points] Show that θMAP = argmaxθ p(y|x, θ)p(θ) if we assume that p(θ) = p(θ|x). The
assumption that p(θ) = p(θ|x) will be valid for models such as linear regression where the
input x are not explicitly modeled by θ. (Note that this means x and θ are marginally
independent, but not conditionally independent when y is given.)

(b) [5 points] Recall that L2 regularization penalizes the L2 norm of the parameters while
minimizing the loss (i.e., negative log likelihood in case of probabilistic models). Now we
will show that MAP estimation with a zero-mean Gaussian prior over θ, specifically θ ∼
N (0, η2I), is equivalent to applying L2 regularization with MLE estimation. Specifically,
show that

θMAP = arg min
θ
− log p(y|x, θ) + λ||θ||22.

Also, what is the value of λ?

(c) [7 points] Now consider a specific instance, a linear regression model given by y = θTx+ ε
where ε ∼ N (0, σ2). Like before, assume a Gaussian prior on this model such that θ ∼
N (0, η2I). For notation, let X be the design matrix of all the training example inputs



CS229 Problem Set #2 5

where each row vector is one example input, and ~y be the column vector of all the example
outputs.

Come up with a closed form expression for θMAP.

(d) [5 points] Next, consider the Laplace distribution, whose density is given by

fL(z|µ, b) =
1

2b
exp

(
−|z − µ|

b

)
.

As before, consider a linear regression model given by y = xT θ + ε where ε ∼ N (0, σ2).
Assume a Laplace prior on this model where θ ∼ L(0, bI).

Show that θMAP in this case is equivalent to the solution of linear regression with L1

regularization, whose loss is specified as

J(θ) = ||Xθ − ~y||22 + γ||θ||1

Also, what is the value of γ?

Note: A closed form solution for linear regression problem with L1 regularization does not
exist. To optimize this, we use gradient descent with a random initialization and solve it
numerically.

Remark: Linear regression with L2 regularization is also commonly called Ridge regression, and
when L1 regularization is employed, is commonly called Lasso regression. These regularizations
can be applied to any Generalized Linear models just as above (by replacing log p(y|x, θ) with
the appropriate family likelihood). Regularization techniques of the above type are also called
weight decay, and shrinkage. The Gaussian and Laplace priors encourage the parameter values
to be closer to their mean (i.e., zero), which results in the shrinkage effect.

Remark: Lasso regression (i.e L1 regularization) is known to result in sparse parameters, where
most of the parameter values are zero, with only some of them non-zero.



CS229 Problem Set #2 6

4. [18 points] Constructing kernels

In class, we saw that by choosing a kernel K(x, z) = φ(x)Tφ(z), we can implicitly map data to a
high dimensional space, and have the SVM algorithm work in that space. One way to generate
kernels is to explicitly define the mapping φ to a higher dimensional space, and then work out
the corresponding K.

However in this question we are interested in direct construction of kernels. I.e., suppose we have
a functionK(x, z) that we think gives an appropriate similarity measure for our learning problem,
and we are considering plugging K into the SVM as the kernel function. However for K(x, z)
to be a valid kernel, it must correspond to an inner product in some higher dimensional space
resulting from some feature mapping φ. Mercer’s theorem tells us that K(x, z) is a (Mercer)
kernel if and only if for any finite set {x(1), . . . , x(m)}, the square matrix K ∈ Rm×m whose
entries are given by Kij = K(x(i), x(j)) is symmetric and positive semidefinite. You can find
more details about Mercer’s theorem in the notes, though the description above is sufficient for
this problem.

Now here comes the question: Let K1, K2 be kernels over Rn × Rn, let a ∈ R+ be a positive
real number, let f : Rn 7→ R be a real-valued function, let φ : Rn → Rd be a function mapping
from Rn to Rd, let K3 be a kernel over Rd × Rd, and let p(x) a polynomial over x with positive
coefficients.

For each of the functions K below, state whether it is necessarily a kernel. If you think it is,
prove it; if you think it isn’t, give a counter-example.

(a) [1 points] K(x, z) = K1(x, z) +K2(x, z)

(b) [1 points] K(x, z) = K1(x, z)−K2(x, z)

(c) [1 points] K(x, z) = aK1(x, z)

(d) [1 points] K(x, z) = −aK1(x, z)

(e) [5 points] K(x, z) = K1(x, z)K2(x, z)

(f) [3 points] K(x, z) = f(x)f(z)

(g) [3 points] K(x, z) = K3(φ(x), φ(z))

(h) [3 points] K(x, z) = p(K1(x, z))

[Hint: For part (e), the answer is that K is indeed a kernel. You still have to prove it, though.
(This one may be harder than the rest.) This result may also be useful for another part of the
problem.]



CS229 Problem Set #2 7

5. [16 points] Kernelizing the Perceptron

Let there be a binary classification problem with y ∈ {0, 1}. The perceptron uses hypotheses
of the form hθ(x) = g(θTx), where g(z) = sign(z) = 1 if z ≥ 0, 0 otherwise. In this problem
we will consider a stochastic gradient descent-like implementation of the perceptron algorithm
where each update to the parameters θ is made using only one training example. However, unlike
stochastic gradient descent, the perceptron algorithm will only make one pass through the entire
training set. The update rule for this version of the perceptron algorithm is given by

θ(i+1) := θ(i) + α(y(i+1) − hθ(i)(x(i+1)))x(i+1)

where θ(i) is the value of the parameters after the algorithm has seen the first i training examples.
Prior to seeing any training examples, θ(0) is initialized to ~0.

(a) [9 points] Let K be a Mercer kernel corresponding to some very high-dimensional feature
mapping φ. Suppose φ is so high-dimensional (say, ∞-dimensional) that it’s infeasible to
ever represent φ(x) explicitly. Describe how you would apply the “kernel trick” to the
perceptron to make it work in the high-dimensional feature space φ, but without ever
explicitly computing φ(x).

[Note: You don’t have to worry about the intercept term. If you like, think of φ as having
the property that φ0(x) = 1 so that this is taken care of.] Your description should specify:

i. [3 points] How you will (implicitly) represent the high-dimensional parameter vector
θ(i), including how the initial value θ(0) = 0 is represented (note that θ(i) is now a
vector whose dimension is the same as the feature vectors φ(x));

ii. [3 points] How you will efficiently make a prediction on a new input x(i+1). I.e., how

you will compute hθ(i)(x
(i+1)) = g(θ(i)

T
φ(x(i+1))), using your representation of θ(i);

and

iii. [3 points] How you will modify the update rule given above to perform an update to θ
on a new training example (x(i+1), y(i+1)); i.e., using the update rule corresponding to
the feature mapping φ:

θ(i+1) := θ(i) + α(y(i+1) − hθ(i)(x(i+1)))x(i+1)

(b) [5 points] Implement your approach by completing the initial state, predict, and
update state methods of src/p05 percept.py.

(c) [2 points] Run src/p05 percept.py to train kernelized perceptrons on data/ds5 train.csv.
The code will then test the perceptron on data/ds5 test.csv and save the resulting pre-
dictions in the src/output folder. Plots will also be saved in src/output. We provide two
kernels, a dot product kernel and an radial basis function (rbf) kernel. One of the provided
kernels performs extremely poorly in classifying the points. Which kernel performs badly
and why does it fail?



CS229 Problem Set #2 8

6. [22 points] Spam classification

In this problem, we will use the naive Bayes algorithm and an SVM to build a spam classifier.

In recent years, spam on electronic media has been a growing concern. Here, we’ll build a
classifier to distinguish between real messages, and spam messages. For this class, we will be
building a classifier to detect SMS spam messages. We will be using an SMS spam dataset
developed by Tiago A. Almedia and José Maŕıa Gómez Hidalgo which is publicly available on
http://www.dt.fee.unicamp.br/~tiago/smsspamcollection

1

We have split this dataset into training and testing sets and have included them in this assignment
as data/ds6 spam train.tsv and data/ds6 spam test.tsv. See data/ds6 readme.txt for
more details about this dataset. Please refrain from redistributing these dataset files. The goal
of this assignment is to build a classifier from scratch that can tell the difference the spam and
non-spam messages using the text of the SMS message.

(a) [5 points] Implement code for processing the the spam messages into numpy arrays that can
be fed into machine learning models. Do this by completing the get words, create dictionary,
and transform text functions within our provided src/p06 spam.py. Do note the corre-
sponding comments for each function for instructions on what specific processing is required.

The provided code will then run your functions and save the resulting dictionary into
output/p06 dictionary and a sample of the resulting training matrix into output/p06 sample train matrix.

(b) [10 points] In this question you are going to implement a naive Bayes classifier for spam
classification with multinomial event model and Laplace smoothing (refer to class notes on
Naive Bayes for details on Laplace smoothing).

Write your implementation by completing the fit naive bayes model and
predict from naive bayes model functions in src/p06 spam.py.

src/p06 spam.py should then be able to train a Naive Bayes model, compute your predic-
tion accuracy and then save your resulting predictions to output/p06 naive bayes predictions.

Remark. If you implement naive Bayes the straightforward way, you’ll find that the
computed p(x|y) =

∏
i p(xi|y) often equals zero. This is because p(x|y), which is the

product of many numbers less than one, is a very small number. The standard computer
representation of real numbers cannot handle numbers that are too small, and instead
rounds them off to zero. (This is called “underflow.”) You’ll have to find a way to compute
Naive Bayes’ predicted class labels without explicitly representing very small numbers such
as p(x|y). [Hint: Think about using logarithms.]

(c) [5 points] Intuitively, some tokens may be particularly indicative of an SMS being in a
particular class. We can try to get an informal sense of how indicative token i is for the
SPAM class by looking at:

log
p(xj = i|y = 1)

p(xj = i|y = 0)
= log

(
P (token i|email is SPAM)

P (token i|email is NOTSPAM)

)
.

Complete the get top five naive bayes words function within the provided code using
the above formula in order to obtain the 5 most indicative tokens.

The provided code will print out the resulting indicative tokens and then save them to
output/p06 top indicative words.

1Almeida, T.A., Gómez Hidalgo, J.M., Yamakami, A. Contributions to the Study of SMS Spam Filtering: New
Collection and Results. Proceedings of the 2011 ACM Symposium on Document Engineering (DOCENG’11),
Mountain View, CA, USA, 2011.



CS229 Problem Set #2 9

(d) [2 points] Support vector machines (SVMs) are an alternative machine learning model that
we discussed in class. We have provided you an SVM implementation (using a radial basis
function (RBF) kernel) within src/svm.py (You should not need to modify that code).

One important part of training an SVM parameterized by an RBF kernel is choosing an
appropriate kernel radius.

Complete the compute best svm radius by writing code to compute the best SVM radius
which maximizes accuracy on the validation dataset.

The provided code will use your compute best svm radius to compute and then write the
best radius into output/p06 optimal radius.


