(CS229 Problem Set #3 1

CS 229, Fall 2018
Problem Set #3: Deep Learning & Unsupervised
learning

Due Wednesday, Nov 14 at 11:59 pm on Gradescope.

Notes: (1) These questions require thought, but do not require long answers. Please be as
concise as possible. (2) If you have a question about this homework, we encourage you to post
your question on our Piazza forum, at http://piazza.com/stanford/fal12018/cs229. (3) If
you missed the first lecture or are unfamiliar with the collaboration or honor code policy, please
read the policy on Handout #1 (available from the course website) before starting work. (4)
For the coding problems, you may not use any libraries except those defined in the provided
environment.yml file. In particular, ML-specific libraries such as scikit-learn are not permitted.
(5) To account for late days, the due date listed on Gradescope is Nov 17 at 11:59 pm. If you
submit after Nov 14, you will begin consuming your late days. If you wish to submit on time,
submit before Nov 14 at 11:59 pm.

All students must submit an electronic PDF version of the written questions. We highly recom-
mend typesetting your solutions via ITEX. If you are scanning your document by cell phone,
please check the Piazza forum for recommended scanning apps and best practices. All students
must also submit a zip file of their source code to Gradescope, which should be created using the
make_zip.py script. In order to pass the auto-grader tests, you should make sure to (1) restrict
yourself to only using libraries included in the environment.yml file, and (2) make sure your
code runs without errors when running p04_gmm.py and p05_kmeans.py. Your submission will
be evaluated by the auto-grader using a private test set.

(CS229 Problem Set #3 2

1. [20 points] A Simple Neural Network

Let X = {z(M ... 2™} be a dataset of m samples with 2 features, i.e (¥} € R2. The samples
are classified into 2 categories with labels y(*) € {0,1}. A scatter plot of the dataset is shown in
Figure 1:

4.0 X x % X XX
XN, Ko RS XX x % x
35 % o x 2 X Xi& x% x X% x %
x X x 2% B xxn X xxx):*s,(
3.0 x X o g X Mk ¥
x o &"x x * o x)’“x
X
- M 0% x X ;xx %3 x§
% 00 ®. 2 XX %
<20 o %oooooé%?l X x x X xx }x)gll‘
¥ 2. 5 o X, % X
:: 0000 O@)&x ”K‘:
151 e Be ¥, o,
o ®o0 o Fx X
x ° @90 © % X X%
104 ¥.% o ©°9Q % T ox x
% % 0o, o , 0%0 x
% 9% @0 ®o % -
051 x X x
XX ¥ Xy x XK %X xx x
0.0 * ":" X %X Xf(X XKk x %

Figure 1: Plot of dataset X.

“”

The examples in class 1 are marked as “x” and examples in class 0 are marked as “o”. We want
to perform binary classification using a simple neural network with the architecture shown in
Figure 2:

Inputs Hidden layer

Figure 2: Architecture for our simple neural network.

Denote the two features x; and zs, the three neurons in the hidden layer hy, ho, and hg, and

the output neuron as o. Let the weight from x; to h; be wl[lj] for i € {1,2},j € {1,2,3}, and the

weight from h; to o be w2, Finally, denote the intercept weight for h; as w([)l’]j, and the intercept

J
weight for o as w([f]. For the loss function, we’ll use average squared loss instead of the usual
negative log-likelihood:

m

1 . ,
1272 (@) _ ()2
mizl(o v

where 0(?) is the result of the output neuron for example i.

(CS229 Problem Set #3 3

(a)

(b)

[5 points] Suppose we use the sigmoid function as the activation function for hq, hg, h3 and
0. What is the gradient descent update to w%, assuming we use a learning rate of a? Your

answer should be written in terms of 2, o, y() and the weights.

[10 points] Now, suppose instead of using the sigmoid function for the activation function
for hy, he, hs and o, we instead used the step function f(x), defined as

fla) = {1’”0

0,z <0

Is it possible to have a set of weights that allow the neural network to classify this dataset
with 100% accuracy?

If it is possible, please provide a set of weights that enable 100% accuracy by completing
optimal_step_weights within src/p01_nn.py and explain your reasoning for those weights
in your PDF.

If it is not possible, please explain your reasoning in your PDF. (There is no need to modify
optimal step_weights if it is not possible.)

Hint: There are three sides to a triangle, and there are three neurons in the hidden layer.

[10 points] Let the activation functions for hq, ha, hg be the linear function f(z) = x and
the activation function for o be the same step function as before.

Is it possible to have a set of weights that allow the neural network to classify this dataset
with 100% accuracy?

If it is possible, please provide a set of weights that enable 100% accuracy by complet-
ing optimal_linear_weights within src/p01.nn.py and explain your reasoning for those
weights in your PDF.

If it is not possible, please explain your reasoning in your PDF. (There is no need to modify
optimal_linear weights if it is not possible.)

(CS229 Problem Set #3 4

2. [15 points] KL divergence and Maximum Likelihood

The Kullback-Leibler (KL) divergence is a measure of how much one probability distribution is
different from a second one. It is a concept that originated in Information Theory, but has made
its way into several other fields, including Statistics, Machine Learning, Information Geometry,
and many more. In Machine Learning, the KL divergence plays a crucial role, connecting various
concepts that might otherwise seem unrelated.

In this problem, we will introduce KL divergence over discrete distributions, practice some simple
manipulations, and see its connection to Maximum Likelihood Estimation.

The KL divergence between two discrete-valued distributions P(X),Q(X) over the outcome
space X is defined as follows':

P(x)
Q@)

Dk (P|Q) = ZP

reX

For notational convenience, we assume P(z) > 0,Vz. (One other standard thing to do is to
adopt the convention that “Olog0 = 0.”) Sometimes, we also write the KL divergence more
explicitly as Dk, (P]|@) = Dk (P(X)||Q(X)).

Background on Information Theory

Before we dive deeper, we give a brief (optional) Information Theoretic background on KL
divergence. While this introduction is not necessary to answer the assignment question, it may
help you better understand and appreciate why we study KL divergence, and how Information
Theory can be relevant to Machine Learning.

We start with the entropy H(P) of a probability distribution P(X), which is defined as

— > P(x)log P(x).

rzeX

Intuitively, entropy measures how dispersed a probability distribution is. For example, a uni-
form distribution is considered to have very high entropy (i.e. a lot of uncertainty), whereas a
distribution that assigns all its mass on a single point is considered to have zero entropy (i.e.
no uncertainty). Notably, it can be shown that among continuous distributions over R, the
Gaussian distribution N (11, 0%) has the highest entropy (highest uncertainty) among all possible

distributions that have the given mean p and variance o2.

To further solidify our intuition, we present motivation from communication theory. Suppose we
want to communicate from a source to a destination, and our messages are always (a sequence
of) discrete symbols over space X (for example, X' could be letters {a,b,...,z}). We want to
construct an encoding scheme for our symbols in the form of sequences of binary bits that are
transmitted over the channel. Further, suppose that in the long run the frequency of occurrence
of symbols follow a probability distribution P(X). This means, in the long run, the fraction of
times the symbol x gets transmitted is P(z).

A common desire is to construct an encoding scheme such that the average number of bits per
symbol transmitted remains as small as possible. Intuitively, this means we want very frequent
symbols to be assigned to a bit pattern having a small number of bits. Likewise, because we are

If P and Q are densities for continuous-valued random variables, then the sum is replaced by an integral,
and everything stated in this problem works fine as well. But for the sake of simplicity, in this problem we’ll just
work with this form of KL divergence for probability mass functions/discrete-valued distributions.

(CS229 Problem Set #3 5

interested in reducing the average number of bits per symbol in the long term, it is tolerable for
infrequent words to be assigned to bit patterns having a large number of bits, since their low
frequency has little effect on the long term average. The encoding scheme can be as complex as
we desire, for example, a single bit could possibly represent a long sequence of multiple symbols
(if that specific pattern of symbols is very common). The entropy of a probability distribution
P(X) is its optimal bit rate, i.e., the lowest average bits per message that can possibly be
achieved if the symbols € X occur according to P(X). It does not specifically tell us how to
construct that optimal encoding scheme. It only tells us that no encoding can possibly give us
a lower long term bits per message than H(P).

To see a concrete example, suppose our messages have a vocabulary of K = 32 symbols, and
each symbol has an equal probability of transmission in the long term (i.e, uniform probability
distribution). An encoding scheme that would work well for this scenario would be to have
log, K bits per symbol, and assign each symbol some unique combination of the log, K bits. In
fact, it turns out that this is the most efficient encoding one can come up with for the uniform
distribution scenario.

It may have occurred to you by now that the long term average number of bits per message
depends only on the frequency of occurrence of symbols. The encoding scheme of scenario A can
in theory be reused in scenario B with a different set of symbols (assume equal vocabulary size
for simplicity), with the same long term efficiency, as long as the symbols of scenario B follow
the same probability distribution as the symbols of scenario A. It might also have occured to
you, that reusing the encoding scheme designed to be optimal for scenario A, for messages in
scenario B having a different probability of symbols, will always be suboptimal for scenario B.
To be clear, we do not need know what the specific optimal schemes are in either scenarios. As
long as we know the distributions of their symbols, we can say that the optimal scheme designed
for scenario A will be suboptimal for scenario B if the distributions are different.

Concretely, if we reuse the optimal scheme designed for a scenario having symbol distribution
Q(X), into a scenario that has symbol distribution P(X), the long term average number of bits
per symbol achieved is called the cross entropy, denoted by H(P,Q):

- P(x)log Q(z).

zeX

To recap, the entropy H(P) is the best possible long term average bits per message (optimal)
that can be achived under a symbol distribution P(X) by using an encoding scheme (possibly
unknown) specifically designed for P(X). The cross entropy H (P, Q) is the long term average bits
per message (suboptimal) that results under a symbol distribution P(X), by reusing an encoding
scheme (possibly unknown) designed to be optimal for a scenario with symbol distribution Q(X).

Now, KL divergence is the penalty we pay, as measured in average number of bits, for using the
optimal scheme for Q(X), under the scenario where symbols are actually distributed as P(X).
It is straightforward to see this

P(z)

Dk (P, P(z

kL(P,Q) = 2@; IS
:ZP(x)log (z) — ZP) log Q(x)
reEX TEX

= H(P,Q) — H(P). (difference in average number of bits.)

(CS229 Problem Set #3 6

If the cross entropy between P and @Q is zero (and hence Dkr,(P||Q) = 0) then it necessarily
means P = Q). In Machine Learning, it is a common task to find a distribution @ that is “close”
to another distribution P. To achieve this, we use Dkr,(Q||P) to be the loss function to be
optimized. As we will see in this question below, Maximum Likelihood Estimation, which is
a commonly used optimization objective, turns out to be equivalent minimizing KL divergence
between the training data (i.e. the empirical distribution over the data) and the model.

Now, we get back to showing some simple properties of KL divergence.

(a)

[5 points] Nonnegativity. Prove the following:
VP,Q DkiL(P|Q) >0

and

Dxrn(P||Q) =0 if and only if P = Q.

Hint: You may use the following result, called Jensen’s inequality. If f is a convex
function, and X is a random variable, then E[f(X)] > f(E[X]). Moreover, if f is strictly
convex (f is convex if its Hessian satisfies H > 0; it is strictly convex if H > 0; for instance
f(z) = —logx is strictly convex), then E[f(X)] = f(E[X]) implies that X = F[X] with
probability 1; i.e., X is actually a constant.

[5 points] Chain rule for KL divergence. The KL divergence between 2 conditional
distributions P(X|Y), Q(X|Y) is defined as follows:

D (P(X|Y)[Q(XIY)) = > P(y) (Z Ploly)log Sii'iﬁ)

This can be thought of as the expected KL divergence between the corresponding conditional
distributions on x (that is, between P(X|Y = y) and Q(X|Y = y)), where the expectation
is taken over the random y.

Prove the following chain rule for KL divergence:
Dkr(P(X,Y)[|Q(X,Y)) = Dxr.(P(X)[|Q(X)) + Dxr (P(Y[X)[|Q(Y]X)).

[5 points] KL and maximum likelihood. Consider a density estimation problem, and
suppose we are given a training set {z(¥;i = 1,...,m}. Let the empirical distribution be
P(x) = LS Yz =z} (P is just the uniform distribution over the training set; i.e.,
sampling from the empirical distribution is the same as picking a random example from the
training set.)

Suppose we have some family of distributions Py parameterized by 6. (If you like, think of
Py(z) as an alternative notation for P(z;6).) Prove that finding the maximum likelihood
estimate for the parameter 6 is equivalent to finding Py with minimal KL divergence from
P. Le. prove:

' s - (@)
arg min Dx1,(P||Py) = arg max ; log Py(x'*)

Remark. Consider the relationship between parts (b-¢) and multi-variate Bernoulli Naive
Bayes parameter estimation. In the Naive Bayes model we assumed Py is of the following

(CS229 Problem Set #3 7

form: Py(z,y) = p(y) [1-—; p(xi|y). By the chain rule for KL divergence, we therefore have:

D1 (P||Py) = Dxr(P(y)lp(y) +ZDKL (@ily)p(zily))-

This shows that finding the maximum likelihood/minimum KL-divergence estimate of the
parameters decomposes into 2n + 1 independent optimization problems: One for the class
priors p(y), and one for each of the conditional distributions p(z;|y) for each feature x;
given each of the two possible labels for y. Specifically, finding the maximum likelihood
estimates for each of these problems individually results in also maximizing the likelihood
of the joint distribution. (If you know what Bayesian networks are, a similar remark applies
to parameter estimation for them.)

(CS229 Problem Set #3 3

3. [25 points] KL Divergence, Fisher Information, and the Natural Gradient

As seen before, the Kullback-Leibler divergence between two distributions is an asymmetric
measure of how different two distributions are. Consider two distributions over the same space
given by densities p(z) and ¢(z). The KL divergence between two continuous distributions, ¢
and p is defined as,

Dxw(pllg) = /_00 p(z) log](;Egdac

= /OO p(z) log p(x)dx — /Oo p(z)log q(x)dx

— 00 — 00

A nice property of KL divergence is that it invariant to parametrization. This means, KL
divergence evaluates to the same value no matter how we parametrize the distributions P and
Q. For eg, if P and @ are in the exponential family, the KL divergence between them is
the same whether we are using natural parameters, or canonical parameters, or any arbitrary
reparametrization.

Now we consider the problem of fitting model parameters using gradient descent (or stochastic
gradient descent). As seen previously, fitting model parameters using Maximum Likelihood
is equivalent to minimizing the KL divergence between the data and the model. While KL
divergence is invariant to parametrization, the gradient w.r.t the model parameters (i.e, direction
of steepest descent) is not invariant to parametrization. To see its implication, suppose we
are at a particular value of parameters (either randomly initialized, or mid-way through the
optimization process). The value of the parameters correspond to some probability distribution
(and in case of regression, a conditional probability distribution). If we follow the direction of
steepest descent from the current parameter, take a small step along that direction to a new
parameter, we end up with a new distribution corresponding to the new parameters. The non-
invariance to reparametrization means, a step of fixed size in the parameter space could end up
in a distribution that could either be extremely far away in Dxkp, from the previous distribution,
or on the other hand not move very much at all w.r.t Dgy, from the previous distributions.

This is where the natural gradient comes into picture. It is best introduced in contrast with the
usual gradient descent. In the usual gradient descent, we first choose the direction by calculating
the gradient of the MLE objective w.r.t the parameters, and then move a magnitude of step size
(where size is measured in the parameter space) along that direction. Whereas in natural gradi-
ent, we first choose a divergence amount by which we would like to move, in the Dxkr, sense. This
effectively gives us a perimeter around the current parameters (of some arbitrary shape), such
that points along this perimeter correspond to distributions which are at an equal Dk -distance
away from the current parameter. Among the set of all distributions along this perimeter, we
move to the distribution that maximizes the objective (i.e minimize Dgj, between data and
itself) the most. This approach makes the optimization process invariant to parametrization.
That means, even if we chose a new arbitrary reparametrization, by starting from a particular
distribution, we always descend down the same sequence of distributions towards the optimum.

In the rest of this problem, we will construct and derive the natural gradient update rule. For
that, we will break down the process into smaller sub-problems, and give you hints to answer
them. Along the way, we will encounter important statistical concepts such as the score function
and Fisher Information (which play a prominant role in Statistical Learning Theory as well).
Finally, we will see how this new natural gradient based optimization is actually equivalent to
Newton’s method for Generalized Linear Models.

(CS229 Problem Set #3 9

Let the distribution of a random variable Y parameterized by 6 € R™ be p(y;6).

(a)

[3 points] Score function

The score function associated with p(y;0) is defined as Vglogp(y;0), which signifies the
sensitivity of the likelihood function with respect to the parameters. Note that the score
function is actually a vector since it’s the gradient of a scalar quantity with respect to the
vector 6.

Recall that E,) [9(y)] = ffooo p(y)g(y)dy. Using this fact, show that the expected value
of the score is 0, i.e.

Eymp(y:0)[Ver log p(y; 0')|gr—g] = 0

[2 points| Fisher Information

Let us now introduce a quantity known as the Fisher information. It is defined as the
covariance matrix of the score function,

1(9) = COVpr(y;Q) [VO/ 1ng(y; 0/)|9’=9]

Intuitively, the Fisher information represents the amount of information that a random
variable Y carries about a parameter 6 of interest. When the parameter of interest is a
vector (as in our case, since § € R™), this information becomes a matrix. Show that the
Fisher information can equivalently be given by

1(9) = Eywp(y;&) [VG’ 10gp<y; el)ve’ Ing(y; 91)T|9’:0]

Note that the Fisher Information is a function of the parameter. The parameter of the
Fisher information is both a) the parameter value at which the score function is evaluated,
and b) the parameter of the distribution with respect to which the expectation and variance
is calculated.

[5 points] Fisher Information (alternate form)

It turns out that the Fisher Information can not only be defined as the covariance of the
score function, but in most situations it can also be represented as the expected negative
Hessian of the log-likelihood.

Show that Ey.py:0) [—V2, logp(y; 0")|gr=6] = Z().

Remark. The Hessian represents the curvature of a function at a point. This shows that
the expected curvature of the log-likelihood function is also equal to the Fisher information
matrix. If the curvature of the log-likelihood at a parameter is very steep (i.e, Fisher
Information is very high), this generally means you need fewer number of data samples to a
estimate that parameter well (assuming data was generated from the distribution with those
parameters), and vice versa. The Fisher information matrix associated with a statistical
model parameterized by 6 is extremely important in determining how a model behaves as
a function of the number of training set examples.

[6 points] Approximating Dkj, with Fisher Information

As we explained at the start of this problem, we are interested in the set of all distributions
that are at a small fixed Dk, distance away from the current distribution. In order to
calculate Dkp, between p(y;6) and p(y; 0 + d), where d € R™ is a small magnitude “delta”
vector, we approximate it using the Fisher Information at 6. Eventually d will be the
natural gradient update we will add to 6. To approximate the KL-divergence with Fisher

CS229 Problem Set #3 10

Infomration, we will start with the Taylor Series expansion of Dgy, and see that the Fisher
Information pops up in the expansion.

1
Show that DKL(p0||p0+d) ~ idTI(Q)d

Hint: Start with the Taylor Series expansion of Dxr,(ps||ps) where 6 is a constant and 0
is a variable. Later set § = 6 + d. Recall that the Taylor Series allows us to approximate a
scalar function f(6) near 6 by:

1) % 1(0) + 0~ 0V SO o=o + 50~ 0) (V3.7 (0)]o=0) (0~ 0)

[8 points] Natural Gradient

Now we move on to calculating the natural gradient. Recall that we want to maximize the
log-likelihood by moving only by a fixed Dgj, distance from the current position. In the
previous sub-question we came up with a way to approximate Dgp, distance with Fisher
Information. Now we will set up the constrained optimization problem that will yield the
natural gradient update d. Let the log-likelihood objective be £(6) = logp(y;6). Let the
Dy, distance we want to move by, be some small positive constant c. The natural gradient
update d* is

d* = arg max £(0 +d) subject to Dkr(pellpe+d) =c¢ (1)

First we note that we can use Taylor approximation on £(6 + d) ~ £() 4+ d*'V ¢ £(0")|g/—¢-
Also note that we calculated the Taylor approximation Dki,(psl||pe+q) in the previous sub-
problem. We shall substitute both these approximations into the above constrainted opti-
mization problem.

In order to solve this constrained optimization problem, we employ the method of Lagrange
multipliers. If you are familiar with Lagrange multipliers, you can proceed directly to solve
for d*. If you are not familiar with Lagrange multipliers, here is a simplified introduction.
(You may also refer to a slightly more comprehensive introduction in the Convex Opti-
mization section notes, but for the purposes of this problem, the simplified introduction
provided here should suffice).

Consider the following constrained optimization problem

d* = arg max f(d) subject to g(d) =c¢

The function f is the objective function and g is the constraint. We instead optimize the
Lagrangian L(d, A), which is defined as

L(d,A) = f(d) = Alg(d) —]

with respect to both d and A\. Here A € R is called the Lagrange multiplier. In order to
optimize the above, we construct the following system of equations:

VaLl(d,\) =0, (a)
VAL(d,) =0. (b)

CS229 Problem Set #3 11

So we have two equations (a and b above) with two unknowns (d and M), which can be
sometimes be solved analytically (in our case, we can).

The following steps guide you through solving the constrained optimization problem:

e Construct the Lagrangian for the constrained optimization problem (1) with the Taylor
approximations substituted in for both the objective and the constraint.

e Then construct the system of linear equations (like (a) and (b)) from the Lagrangian
you obtained.

e From (a), come up with an expression for d that involves A.
At this stage we have already found the “direction” of the natural gradient d, since
A is only a positive scaling constant. For most practical purposes, the solution we
obtain here is sufficient. This is because we almost always include a learning rate
hyperparameter in our optimization algorithms, or perform some kind of a line search
for algorithmic stability. This can make the exact calculation of A less critical. Let’s
call this expression d (involving \) as the unscaled natural gradient. Clearly state what
is d as a function of \.
The remaining steps are to figure out the value of the scaling constant A along the
direction of d, for completeness.

e Plugin that expression for d into (b). Now we have an equation that has A but not d.
Come up with an expression for A that does not include d.

e Plug that expression for A (without d) back into (a). Now we have an equation that
has d but not A. Come up with an expression for d that does not include .

The expression of d obtained this way will be the desired natural gradient update d*. Clearly
state and highlight your final expression for d*. This expression cannot include A.

[2 points] Relation to Newton’s Method

After going through all these steps to calculate the natural gradient, you might wonder if
this is something used in practice. We will now see that the familiar Newton’s method that
we studied earlier, when applied to Generalized Linear Models, is equivalent to natural
gradient on Generalized Linear Models. While the two methods (Netwon’s and natural
gradient) agree on GLMs, in general they need not be equivalent.

Show that the direction of update of Newton’s method, and the direction of natural gradient,
are exactly the same for Generalized Linear Models. You may want to recall and cite the
results you derived in problem set 1 question 4 (Convexity of GLMs). For the natural
gradient, it is sufficient to use ci, the unscaled natural gradient.

CS229 Problem Set #3 12

4. [30 points] Semi-supervised EM

Expectation Maximization (EM) is a classical algorithm for unsupervised learning (i.e., learning
with hidden or latent variables). In this problem we will explore one of the ways in which EM
algorithm can be adapted to the semi-supervised setting, where we have some labelled examples
along with unlabelled examples.

In the standard unsupervised setting, we have m € N unlabelled examples {z(1), ... (™)},
We wish to learn the parameters of p(z,z;6) from the data, but 2(1’s are not observed. The
classical EM algorithm is designed for this very purpose, where we maximize the intractable
p(xz;0) indirectly by iteratively performing the E-step and M-step, each time maximizing a
tractable lower bound of p(z;6). Our objective can be concretely written as:

m

gunsup (9) = Z lng('r(i); 9)
1=1

= Zm: log Y p(a”,21;0)
=1

2(9)

Now, we will attempt to construct an extension of EM to the semi-supervised setting. Let us
suppose we have an additional m € N labelled examples {(x(}),z(1)) ... (2™ 2(™)} where
both = and z are observed. We want to simultaneously maximize the marginal likelihood of the
parameters using the unlabelled examples, and full likelihood of the parameters using the labelled
examples, by optimizing their weighted sum (with some hyperparameter «). More concretely,
our semi-supervised objective fsemi-sup(#) can be written as:

laup(0) = > logp(&™, 2 0)
=1

Esemi—sup (0) = Zunsup(e) + aésup(a)

We can derive the EM steps for the semi-supervised setting using the same approach and steps
as before. You are strongly encouraged to show to yourself (no need to include in the write-up)
that we end up with:

E-step (semi-supervised)
For each i € {1,...,m}, set

Qgt)(z(z‘)) = p(z@]2); 91

M-step (semi-supervised)

m , (@) (). m) ,

plt+1) . arg max [Z (Z Qgt)(z(l)) log W) + « (Z Ing(i‘(l)7 7). 9))1
i=1 2(4) i =1

(a) [5 points] Convergence. First we will show that this algorithm eventually converges. In

order to prove this, it is sufficient to show that our semi-supervised objective fsemi-sup(6)

monotonically increases with each iteration of E and M step. Specifically, let #(*) be the

parameters obtained at the end of ¢ EM-steps. Show that fsemi-sup (0¢F) > Leemisup (D).

CS229 Problem Set #3 13

Semi-supervised GMM

Now we will revisit the Gaussian Mixture Model (GMM), to apply our semi-supervised EM al-
gorithm. Let us consider a scenario where data is generated from k& € N Gaussian distributions,
with unknown means p; € R? and covariances X; € S where j € {1,...,k}. We have m data
points () € R i € {1,...,m}, and each data point has a corresponding latent (hidden/un-
known) variable PAONNS {1,...,k} indicating which distribution 2 belongs to. Specifically,
21 ~ Multinomial(¢), such that Z§:1 $; = Land ¢; > 0 for all j, and D2 ~ N (), 2,0))
iid. So, u, ¥, and ¢ are the model parameters.

We also have an additional 7 data points 2 € R?,; € {1,...,m}, and an associated observed
variable 2 € {1,...,k} indicating the distribution () belongs to. Note that 2(*) are known
constants (in contrast to z(*) which are unknown random variables). As before, we assume
FD)ZO ~ N (pz), Sz) 1.

In summary we have m + m examples, of which m are unlabelled data points x’s with unobserved
2’s, and 7 are labelled data points Z(*) with corresponding observed labels 2(). The traditional
EM algorithm is designed to take only the m unlabelled examples as input, and learn the model
parameters u, 3, and ¢.

Our task now will be to apply the semi-supervised EM algorithm to GMMs in order to leverage
the additional m labelled examples, and come up with semi-supervised E-step and M-step update
rules specific to GMMs. Whenever required, you can cite the lecture notes for derivations and
steps.

(b) [5 points] Semi-supervised E-Step. Clearly state which are all the latent variables that
need to be re-estimated in the E-step. Derive the E-step to re-estimate all the stated
latent variables. Your final E-step expression must only involve z, z, 4, X, ¢ and universal
constants.

(¢) [5 points] Semi-supervised M-Step. Clearly state which are all the parameters that
need to be re-estimated in the M-step. Derive the M-step to re-estimate all the stated
parameters. Specifically, derive closed form expressions for the parameter update rules for
ptD 30D and ¢+ based on the semi-supervised objective.

(d) [5 points] [Coding Problem] Classical (Unsupervised) EM Implementation. For
this sub-question, we are only going to consider the m unlabelled examples. Follow the
instructions in src/p04_gmm.py to implement the traditional EM algorithm, and run it on
the unlabelled data-set until convergence.

Run three trials and use the provided plotting function to construct a scatter plot of the
resulting assignments to clusters (one plot for each trial). Your plot should indicate clus-
ter assignments with colors they got assigned to (i.e., the cluster which had the highest
probability in the final E-step).

Note: You only need to submit the three plots in your write-up. Your code will not be
autograded.

(e) [7 points] [Coding Problem] Semi-supervised EM Implementation. Now we will
consider both the labelled and unlabelled examples (a total of m + m), with 5 labelled
examples per cluster. We have provided starter code for splitting the dataset into a ma-
trices x of labelled examples and x_tilde of unlabelled examples. Add to your code in
src/p04_gmm.py to implement the modified EM algorithm, and run it on the dataset until
convergence.

Create a plot for each trial, as done in the previous sub-question.

CS229 Problem Set #3 14

Note: You only need to submit the three plots in your write-up. Your code will not be
autograded.

[3 points] Comparison of Unsupervised and Semi-supervised EM. Briefly describe
the differences you saw in unsupervised vs. semi-supervised EM for each of the following:
i. Number of iterations taken to converge.
ii. Stability (i.e., how much did assignments change with different random initializations?)
iii. Overall quality of assignments.
Note: The dataset was sampled from a mixture of three low-variance Gaussian distribu-

tions, and a fourth, high-variance Gaussian distribution. This should be useful in deter-
mining the overall quality of the assignments that were found by the two algorithms.

CS229 Problem Set #3 15

5. [20 points] K-means for compression

In this problem, we will apply the K-means algorithm to lossy image compression, by reducing
the number of colors used in an image.

We will be using the files data/peppers-small.tiff and data/peppers-large.tiff.

The peppers-large.tiff file contains a 512x512 image of peppers represented in 24-bit color.
This means that, for each of the 262144 pixels in the image, there are three 8-bit numbers (each
ranging from 0 to 255) that represent the red, green, and blue intensity values for that pixel. The
straightforward representation of this image therefore takes about 262144 x 3 = 786432 bytes (a
byte being 8 bits). To compress the image, we will use K-means to reduce the image to k = 16
colors. More specifically, each pixel in the image is considered a point in the three-dimensional
(r, g,b)-space. To compress the image, we will cluster these points in color-space into 16 clusters,
and replace each pixel with the closest cluster centroid.

Follow the instructions below. Be warned that some of these operations can take a while (several
minutes even on a fast computer)!

(a) [15 points] [Coding Problem] K-Means Compression Implementation. From the
data directory, open an interactive Python prompt, and type

from matplotlib.image import imread; import matplotlib.pyplot as plt;

and run A = imread(’peppers-large.tiff’). Now, A is a “three dimensional matrix,”
and A[:,:,0], A[:,:,1] and A[:,:,2] are 512x512 arrays that respectively contain the
red, green, and blue values for each pixel. Enter plt.imshow(A4); plt.show() to display
the image.

Since the large image has 262144 pixels and would take a while to cluster, we will instead run
vector quantization on a smaller image. Repeat (a) with peppers-small.tiff. Treating
each pixel’s (r, g,b) values as an element of R3, run K-means? with 16 clusters on the pixel
data from this smaller image, iterating (preferably) to convergence, but in no case for less
than 30 iterations. For initialization, set each cluster centroid to the (r, g, b)-values of a
randomly chosen pixel in the image.

Take the matrix A from peppers-large.tiff, and replace each pixel’s (r, g,b) values with
the value of the closest cluster centroid. Display the new image, and compare it visually
to the original image. Include in your write-up all your code and a copy of your
compressed image.

(b) [points] Compression Factor. If we represent the image with these reduced (16) colors,
by (approximately) what factor have we compressed the image?

2Please implement K-means yourself, rather than using built-in functions.

