$$\gdef \sam #1 {\mathrm{softargmax}(#1)}$$ $$\gdef \vect #1 {\boldsymbol{#1}} $$ $$\gdef \matr #1 {\boldsymbol{#1}} $$ $$\gdef \E {\mathbb{E}} $$ $$\gdef \V {\mathbb{V}} $$ $$\gdef \R {\mathbb{R}} $$ $$\gdef \N {\mathbb{N}} $$ $$\gdef \relu #1 {\texttt{ReLU}(#1)} $$ $$\gdef \D {\,\mathrm{d}} $$ $$\gdef \deriv #1 #2 {\frac{\D #1}{\D #2}}$$ $$\gdef \pd #1 #2 {\frac{\partial #1}{\partial #2}}$$ $$\gdef \set #1 {\left\lbrace #1 \right\rbrace} $$ % My colours $$\gdef \aqua #1 {\textcolor{8dd3c7}{#1}} $$ $$\gdef \yellow #1 {\textcolor{ffffb3}{#1}} $$ $$\gdef \lavender #1 {\textcolor{bebada}{#1}} $$ $$\gdef \red #1 {\textcolor{fb8072}{#1}} $$ $$\gdef \blue #1 {\textcolor{80b1d3}{#1}} $$ $$\gdef \orange #1 {\textcolor{fdb462}{#1}} $$ $$\gdef \green #1 {\textcolor{b3de69}{#1}} $$ $$\gdef \pink #1 {\textcolor{fccde5}{#1}} $$ $$\gdef \vgrey #1 {\textcolor{d9d9d9}{#1}} $$ $$\gdef \violet #1 {\textcolor{bc80bd}{#1}} $$ $$\gdef \unka #1 {\textcolor{ccebc5}{#1}} $$ $$\gdef \unkb #1 {\textcolor{ffed6f}{#1}} $$ % Vectors $$\gdef \vx {\pink{\vect{x }}} $$ $$\gdef \vy {\blue{\vect{y }}} $$ $$\gdef \vb {\vect{b}} $$ $$\gdef \vz {\orange{\vect{z }}} $$ $$\gdef \vtheta {\vect{\theta }} $$ $$\gdef \vh {\green{\vect{h }}} $$ $$\gdef \vq {\aqua{\vect{q }}} $$ $$\gdef \vk {\yellow{\vect{k }}} $$ $$\gdef \vv {\green{\vect{v }}} $$ $$\gdef \vytilde {\violet{\tilde{\vect{y}}}} $$ $$\gdef \vyhat {\red{\hat{\vect{y}}}} $$ $$\gdef \vycheck {\blue{\check{\vect{y}}}} $$ $$\gdef \vzcheck {\blue{\check{\vect{z}}}} $$ $$\gdef \vztilde {\green{\tilde{\vect{z}}}} $$ $$\gdef \vmu {\green{\vect{\mu}}} $$ $$\gdef \vu {\orange{\vect{u}}} $$ % Matrices $$\gdef \mW {\matr{W}} $$ $$\gdef \mA {\matr{A}} $$ $$\gdef \mX {\pink{\matr{X}}} $$ $$\gdef \mY {\blue{\matr{Y}}} $$ $$\gdef \mQ {\aqua{\matr{Q }}} $$ $$\gdef \mK {\yellow{\matr{K }}} $$ $$\gdef \mV {\lavender{\matr{V }}} $$ $$\gdef \mH {\green{\matr{H }}} $$ % Coloured math $$\gdef \cx {\pink{x}} $$ $$\gdef \ctheta {\orange{\theta}} $$ $$\gdef \cz {\orange{z}} $$ $$\gdef \Enc {\lavender{\text{Enc}}} $$ $$\gdef \Dec {\aqua{\text{Dec}}}$$

layout: default title: DEEP LEARNING author: Alfredo Canziani lang-ref: home —

DS-GA 1008 · SPRING 2020 · NYU CENTER FOR DATA SCIENCE

INSTRUCTORS Yann LeCun & Alfredo Canziani
LECTURES Mondays 16:55 – 18:35, GCASL C95
PRACTICA Tuesdays 19:10 – 20:00, GCASL C95
FORUM r/NYU_DeepLearning
DISCORD NYU DL
MATERIAL Google Drive, Notebooks

Description

This course concerns the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. The prerequisites include: DS-GA 1001 Intro to Data Science or a graduate-level machine learning course.

Lectures

Legend: 🖥 slides, 📓 Jupyter notebook, 🎥 YouTube video.

Week Format Title Resources
Lecture History and motivation 🖥️ 🎥
Evolution and DL
Practicum Neural nets (NN) 📓 📓 🎥
Lecture SGD and backprop 🖥️ 🎥
Backprop in practice
Practicum NN training 🖥 📓 📓 🎥
Lecture Parameter transformation 🖥️ 🎥
CNN
Practicum Natural signals' properties 🖥 📓 🎥
Practicum 1D convolutions 📓 🎥
Lecture Optimisation I 🖥️ 🎥
Optimisation II
Practicum CNN, autograd 📓 📓 🎥
Lecture CNN applications 🖥️ 🖥️ 🎥
RNNs and attention
Practicum Training RNNs 📓 📓 🖥️ 🎥
Lecture Energy-Based Models 🖥️ 🎥
SSL, EBM
Practicum Autoencoders 🖥️ 📓 🎥
Lecture Contrastive methods 🖥️ 🎥
Regularised latent
Practicum Training VAEs 🖥️ 📓 🎥
Lecture Sparsity 🖥️ 🎥
World model, GANs
Practicum Training GANs 🖥️ 📓 🎥
Lecture CV SSL I 🖥️ 🎥
CV SSL II
Practicum Predictive Control 🖥️ 📓 🎥
Lecture Activations 🖥️ 🖥️ 🖥️ 🎥
Losses
Practicum PPUU 🖥️ 📓 🎥
Lecture DL for NLP I 🖥️ 🎥
DL for NLP II
Practicum Attention & transformer 🖥️ 📓 🎥
Lecture GCNs I 🖥️ 🎥
GCNs II
Practicum GCNs III 🖥️ 📓 🎥
Lecture Structured Prediction 🖥️ 🎥
Graphical methods
Practicum Regularisation and Bayesian 🖥️ 📓 🖥️ 📓 🎥
Practicum Inference for Latent-Variable EBMs 🖥️ 🎥
Training Latent-Variable EBMs 🖥️ 🎥

People

Role Photo Contact About
Instructor Yann LeCun
yann@cs.nyu.edu
Silver Professor in CS at NYU
and Turing Award winner
Instructor Alfredo Canziani
canziani@nyu.edu
Asst. Prof. in CS at NYU
Assistant Mark Goldstein
goldstein@nyu.edu
PhD student in CS at NYU
Webmaster Zeming Lin
zl2799@nyu.edu
PhD student in CS at NYU